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Abstract—With the increase in demand for electricity and the
number of end-use consumers, the operation and control of power
grids have become more and more complex and challenging.
Ensuring acceptable reliability and quality of the electricity
supply has become particularly important to every aspect of our
electrified economy. Due to the growing deployment of Micro-
Phasor Measurement Units (µPMUs) in power distribution grids,
an abundance of high-resolution measurements is available that
can be harnessed for smarter operation and fault analyses in
power distribution networks. Traditional models have revealed
limitations on the network topology identification which may
occupy manpower and material resources with no guaranty to
effectively restore power in a short time period when facing faults
and other disruptions. This paper suggests and implements a
machine learning framework that uses the µPMU measurements
as inputs and provides a full observation of the network topology
in real-time. Specifically, the proposed framework employs a Con-
volutional Neural Network (CNN) to identify the physical state
of the power network at all times. We evaluated the framework
on the IEEE 34-node test feeder, where the experiments show
that the proposed CNN can achieve a promising performance
with high accuracy even when the µPMU measurements contain
noises and missing entries.

Index Terms—Micro-Phasor Measurement Unit (µPMU); Con-
volutional Neural Network (CNN); power distribution network;
topology identification.

I. INTRODUCTION

In order to generate and dispatch the electrical power
efficiently and operate the power grid stably and safely,
system operators need to be informed of the electrical network
topology and demand profile at all times. The observability
and controllability of the electrical network are essential to
ensure its safe and economic operation. With the growing
complexity in the power grid structure growingly reinforced
with heterogeneous resources and the increasing demand for
electricity needed for an electrified economy, Phasor Measure-
ment Units (PMUs) have been introduced and widely deployed
to observe the dynamic performance of the power grid with
synchronized measurements. Compared to the traditional event
detection schemes and infrastructure such as Feeder Terminal
Unit (FTU), distribution Transformer supervisory Terminal
Unit (TTU), and Remote Terminal Unit (RTU), Micro-PMUs
(µPMUs) in power distribution grids offer yet-untapped po-
tential for online situational awareness, i.e., event detection,
classification, and high-fidelity high-resolution measurements.

Access to high-fidelity measurements in power distribution
systems is particularly critical, and at the same time challeng-
ing due to the following reasons [1]:

(i) The length of the power distribution lines is usually
between 5 to 10 kilometers, resulting in the phase an-
gle difference between the two ends of the line to be
commonly small (sometimes even lower than 0.1◦).

(ii) The proliferation and rushing arrival of renewables have
increased the complexity in the grid structure and the way
electricity flows in the network. Three-phase unbalance
architectures are commonly seen in power distribution
systems, which could result in more than 30% inter-
harmonics and under 60dB noise conditions.

(iii) The fast switching characteristics of power electronic de-
vices lead to more electrical transients, further mandating
the higher efficiency and dynamic tracking capability of
the event detectors in the power distribution sector.

While PMU measurements can be shared over communi-
cation networks in real-time and collected at a centralized
platform, called Phasor Data Concentrators (PDC) [2] for
further processing, the underlying network models are mostly
unavailable or incomplete. This makes it challenging to get
the most out of the synchronized measurements for fault
detection and localization applications when the real-time
network topology is unknown or not accurate. The problem
of estimating the state of the power grid is often divided
into two interrelated phases: the first is the state estimation in
which the estimated value is the voltage at all buses across the
network, and the second is topology processing and topology
error detection, in which the breaker status is used to track
the current topology of the grid, and to detect and correct the
errors in the calculated topology. These two stages iterate, and
the combined process is known as generalized state estimation
[3]. With the measurements received from the µPMUs and
when judiciously integrated with the topological processing of
the visual image, the abnormal conditions in the distribution
network (e.g., fault location, fault detection, etc.) can be better
handled, further improving the network reliability, reducing the
economic losses, and mitigating the electrical safety concerns.

A variety of research methods have been proposed to iden-
tify the power system topology from synchrophasor measure-
ments, and several methods of external network modeling were
discussed to implement online security analyses [4]. In [5], a
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Jacobian-based equivalent approach is used for detecting the
electrical network topology changes in the external system. An
approach which is a hybrid of power flow and state estimation
is discussed in [6]. A method to capture the network topology
changes based on an extended Ward equivalent is discussed in
[7]. H. Singh, et al. [8] introduced a technique that estimates
the status of suspect lines as part of the state estimation
process. Focused on transmission systems with inaccurate
parameters, an offline REI (radial, equivalent, independent)
equivalent [9] is suggested to be built from a base-case
condition and to be updated using online data [10]. In order
to improve the accuracy of the topology detection process,
the problem of using telemetry data to correct and adjust the
transmission parameters are considered in [11]. The network
topology estimation accuracy could vary greatly depending
on the information injections at the non-PMU buses. If the
injections at the non-PMU buses are zero, the estimates will
be the true equivalent at the PMU buses. In [12], a least-square
“model-free” approach is proposed to estimate the equivalent
power system topology by calculating the load variations
with limited observation at each bus. In [13], a method for
visualizing PMU data by reducing the system to an equivalent
model at the PMU buses is discussed, which assumes the
electrical network topology is known; an equivalent procedure
is performed to reduce the network to a Ward type equivalent
at the PMU buses. Another useful visualization technique
has been done by biplots introduced in [14]. S. V. Wiel, et
al. [3] developed a greedy search algorithm to estimate the
current topology of a power grid from phasor measurements. It
studies the PMU placement at strategic points in a distribution
system [15] to achieve a promising sensitivity to single-line
outages. G. Cavraro, et al. [16] proposed a novel method for
topology detection in distribution networks called the Time-
Series Signature Verification for Topology Detection (TSV-
Top). This approach relies on measurement time series from
PMUs and performs the projection of actual voltage phasor
patterns onto a library of signals associated with possible
topology transitions of a given distribution network [17].

The above literature review revealed that most of the power
grid topology identification and estimation tools are based
on mathematical models, the majority of them assuming
an electrical network topology first and then measure the
collected data to compare the features and determine the
accuracy of the previously assumed network topology. Such
strategies are time-consuming, less accurate, and with practical
limitations. On the contrary, there are more recent strategies
leveraging machine learning advancements. Instead of accu-
rately modeling the system, recent works have focused on
training artificial neural networks to automatically recognize
the electrical network topology and solve complex problems.
In [18] and [19], two learning algorithms based on nodal
voltage graphical models are introduced which can estimate
the network topology under varying topological restrictions. D.
Deka, et al. [20] developed a learning framework to reconstruct
the radial operational structure of the distribution grid from
synchronized voltage measurements across the network subject
to the exogenous fluctuations in nodal power consumption.
For the economic purposes, P. K. Ghosh, et al. [21] proposed

Fig. 1. A two-convolution-layer CNN structure.

a novel approach for complete system and fault observability
using a minimum number of strategically-placed PMUs.

To overcome the limitations of the traditional mathematical
models, this paper proposes a machine learning framework
for online identification of the distribution network topology.
The neural network is trained using µPMU measurements
across the network—voltage, current magnitudes, and their
phase angles—and achieves the real-time network topology
with high accuracy even under noise and missing entries in
PMU measurements. The measured data are rearranged into
a 2-D matrix (heatmap), where the suggested Convolutional
Neural Network (CNN) [22] takes them as the input. The
performance of the proposed algorithm is tested and verified
in a radial three-phase unbalanced distribution network. The
rest of the paper is structured as follows: Section II introduces
the technical background on the design of the proposed con-
volutional neural network framework. Section III implements
the suggested approach on the IEEE 34-node test feeder in
MATLAB/Simulink platform and generates µPMU heatmaps
under different system operating scenarios. Section IV presents
the numerical studies and the network topology identification
results in power distribution systems with noisy and missing
measurements. Finally, we conclude the paper in Section V.

II. TECHNICAL BACKGROUND

Within the family of neural networks, and to train the model
with a grid-like topology such as images, deep CNN has
been one of the greatest breakthroughs [23]–[25]. As it shows
in Figure 1, the CNN structure consists of a convolutional
layer, a pooling layer, and fully connected layers (FCs). When
applied to single-label (multi-class) image classification, CNN
can handle well-aligned images very well [26].

By definition, CNNs are simply neural networks that use
convolution in place of the FC layer in that least one of their
layers [27]. In general, the implementation of the convolution
is actually the cross-correlation assessment and defined by

sp(m,n) =
∑
u

∑
v

∑
w

Iu(m+ v, n+ w)Kp(v, w), (1)

where sp(m,n) is the output of the convolutional layer at
position (m,n) and p-th channel, Iu is the u-th channel of
the data volume, and Kp is the p-th convolutional kernel. A
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Fig. 2. CNN working flowchart [32].

nonlinear activation function is applied to the output of the
convolution output, and the final activations of neurons in a
convolutional layer are

I l = σ(s), (2)

where I l represents the output volume of the l-th layer, and
σ(·) represents the non-linearity of the neurons. By stacking
the convolutional layers, the abstraction capacity of the net-
work increases [28].

The representations (outputs) of the last convolutional
(Conv) layer are expanded to vectors and processed by the
general fully-connected layers, which transform the represen-
tations with more nonlinearities and into spaces with different
(higher or lower) dimensions. The final layer of a CNN
usually reduces the dimensionality of the representations to
the number of the classes; cross-entropy [29] is then employed
to measure the “goodness” of the classification (Kullback-
Leibler divergence between the predicted distribution and the
target distribution). Finally, gradients of the cross-entropy loss
function with respect to the parameters in the CNN are used
to train the CNN by back-propagation.

In this paper, the proposed CNN for the heatmap classi-
fication in the IEEE 34-node test feeder has the following
architecture: Input(33×12)–Conv(32, 5×3)–Conv(32, 3×3)–
FC(100)–FC(9). Note that the axes of the input heat-map are
with different units; we, therefore, chose narrow kernel in the
first Conv layer which could cover the 3-phase data in each
group, and the stride of the convolution operation in the first
layer is (3, 2)—other Conv layers’ strides are (1, 1). This
design processes the data in each group first, then combines
the information of each group in the second Conv layer and
the FC layer. Batch normalization [30] is used in each Conv
layer. Dropout [31] is adopted in the last Conv layer and the
FC layer to prevent over-fitting. Rectified Linear Unit (ReLU)
were chosen as nonlinearities in the neural net.

The flowchart of the proposed CNN is shown in Figure
2, where the first step is to collect µPMU data and normalize
them into per-units. Such data with their corresponding topolo-
gies are then inputted into the neural network, and the trained
network learns to identify distribution grid topology with
µPMU measurements. The CNN used cross-entropy as the loss
function. Finally, we used additional µPMU measurements
beyond the training set to verify the model accuracy.

This CNN architecture will be used as a building block
in the proposed framework that identifies the power distribu-
tion network topology in real-time. The relation between the
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Fig. 3. IEEE 34-Node Test Feeder [33].

µPMU measurements and the CNN module will be detailed
in the next section.

III. PROPOSED METHODOLOGY

For the general loopy grids, there may be multiple paths
between two nodes. If power distribution grids are featured
with minimum cycle length greater than three, the nodal
voltages are sufficient for efficient topology estimation without
additional assumptions on the system parameters. In contrast,
the detection of line failures or status change using nodal
voltages does not require any structural assumption on the
network [18], [19]. As for the case of the IEEE 34-node
test feeder, the minimum cycle length in a radial graph is
considered to be infinite as it has no cycles by definition.
Hence, using nodal µPMU measurements, such as voltage and
current phasors, real-time network topology estimation on the
IEEE 34-node feeder system is effectively viable.

The problem of detecting the network topology change can
recast as a classification problem based on the heatmaps which
are obtained by the µPMUs measurements. The conventional
classification approaches often involve manually designed fea-
tures like thresholds and signatures in each scenario. However,
these approaches require the human expertise and the type
of topology it can detect would be limited. E.g., a threshold
may be suitable for a certain topology, but if one node
becomes offline in the electrical network, the threshold would
not work anymore. We propose an artificial neural network
platform that can learn the features (representations) of the
data automatically. The proposed framework for online power
system topology identification is illustrated in Figure 4. The
µPMUs data is first used for offline training of the pre-
built CNN model. The trained model is then used for online
identification of the power distribution network topology.

To gain a full observation of the IEEE 34-node test feeder
as shown in Figure 3, we set 33 µPMUs on each node
expect node 800 (substation bus). As it shows in Table I,
we also added 5 breakers in order to generate different
electrical network topologies for the CNN training dataset.
To generate more scenarios under one topology, we marked
5 loads, so the µPMU data could be varying under different
realization of the load demand. Different colors are here used
to mark the phasing status, e.g., we used pink to mark the
line 800-812 as BACN, meaning that it is a three-phase four-
wire segment in the distribution grid. The proposed network
topology identification approach is applied on a three-phase
unbalanced electrical distribution system.
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Fig. 4. The proposed framework for power system online topology identification. [34].

TABLE I
NETWORK MODEL SPECIFICATIONS AND VARIABLES

Breaker
Name SW∗1 SW2 SW3 SW4 SW5

Breaker
Location 850-816 818-820 832-858 834-842 836-862

Load
Name Load1† Load2† Load3† Load4 Load5

Location 824-828 820-822 858-834 844 840
* SW: Breaker
† : Distributed load

Upon simulating each scenario in MATLAB Simulink en-
vironment, the resulting µPMU data will characterize a 33
by 12 heatmap matrix which contains three-phase voltage,
three-phase voltage angle, three-phase current, and three-phase
current angles. For the nodal measurements that contain single-
phase or two-phase data, we let the remaining entries be
zero. We line up the data in a heatmap format into four
groups, process the data in each group individually, and finally
integrate the information in each group together. A partially
connected neural network is dedicated to the processing of
these groups of heatmaps. In practice, a partially connected
neural network is equivalent to a CNN. We design a CNN by
carefully selecting the kernels in the first layer.

TABLE II
NETWORK TOPOLOGY REALIZATIONS WITH THE CORRESPONDING

NUMBER OF GENERATED SCENARIOS.

Topology SW1 SW2 SW3 SW4 SW5 Number of
Scenarios

1 1 1 0 0 0 1600
2 1 0 1 0 0 2197
3 1 0 1 1 0 2401
4 1 0 1 1 1 2401
5 1 1 1 0 0 2401
6 1 1 1 0 1 2401
7 1 1 1 1 0 3125
8 1 1 1 1 1 3125

Table II shows the general configuration of all simulated
scenarios. Take Topology 1 as an example, in which Breaker
1 and Breaker 2 are closed (status=1), Breaker 3 is open (sta-
tus=0). For each network topology configuration, we generate

different scenarios by adjusting the loads values. To keep the
balance and avoid generating redundant training data for the
CNN [35], keen considerations were taken into account in
generating different load scenarios. We let the load change
amplitude uniformly distributed between 95% to 105% of the
rated demand at each load point. In Topology 1, only Load
1 and Load 2 are served through the connected distribution
line and it is not necessary to adjust the remaining three load
points for scenario generation. Assuming each load has 40
possible amplitudes in the constrained range above, the total
number of scenarios is found 402 in this case, i.e., 1600. Under
the network Topology 8, all five loads are being served in
the distribution grid, and as each one is characterized with
5 possible amplitudes for the training process, there are 55,
i.e., 3125, number of scenarios generated. The total number
of generated scenarios that contribute to the training dataset
is found 19651. As mentioned before, the simulation of each
scenario results in a heatmap (see Figure 5 for a heatmap
example); these heatmaps are used as the inputs to the CNN.

Fig. 5. A heatmap example of the generated µPMU measurement data sample.

IV. NUMERICAL CASE STUDY

A. Data Generation and Preprocessing

For the case of IEEE 34-node test feeder, the obtained data
are 33 by 12 heatmaps which stand by 33 µPMUs data points
(rows) and are consisted of the voltage, current, and phase
angle information (columns) from the µPM measurements.
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These µPMU measurements are obtained under full obser-
vations of all scenarios in the power network as mentioned
in Section III and generated in the MATLAB environment.
We built the entire test feeder system in Simulink, and set all
block parameters according to the data provided in [33]. In
order to save the simulation time, we here used a technique
of parallel simulation operation in Simulink [36], which could
run simulations of multiple scenarios simultaneously. When
the µPMU measurements are captured, all scenarios were
classified into three folders: training dataset, testing dataset,
and validation dataset, where each folder contains 8 topologies
as presented in Table II.

In order to facilitate the CNN computation, we normalized
the columns of the heatmaps (such as per-unit voltage and
current values) through a zero-mean and unity variance distri-
bution. We also randomly separate 80% of the total simulation
outputs as the training dataset, 10% for testing dataset, and
10% for validation dataset.

B. Results Analysis
In order to test the performance of the proposed frame-

work, we conduct experiments that are closer to the realistic
situations. In the first group experiments, we applied different
interferences in the dataset. The interferences include both the
noise and the missing data. The accuracy of the proposed
topology identification framework in the conducted experi-
ments is shown in Table III. Wherein, one epoch of training
means every sample in the training dataset is used in the
training of the CNN once, and the SNR refers to the Signal-
to-Noise Ratio. One can see that as the number of training
epochs increases, the accuracy also increases. The ”Validation
Accuracy” in the Table III corresponds to the condition when
the neural network was trained by the training dataset, and
the accuracy of identifying the electrical network topology is
assessed using the validation dataset which is included in
the training dataset; and the ”Prediction Accuracy” refers to
the condition when the neural network was trained by the
testing dataset, and the accuracy of the network topology
identification is assessed using the testing dataset which is
excluded in the training dataset.

As one can see, the accuracy of the proposed electrical
network topology identification scheme was never found lower
than 95%. This is because for one epoch training, all the testing
data were included in the training dataset. For example, for full
measurement containing 10dB SNR, and when the number of
epochs is 20, the neural network was trained by the training
dataset contained 10dB SNR, leading to an identification
accuracy of 99.9%. Hence, the prediction accuracy cloud be
achieved high as long as the neural network was trained well.
In this situation, the prediction is actually called identification,
because all scenarios are already known, taking advantage of
a full observation. Additionally, when all measurements are
available and the SNR is greater then 20dB, the proposed
CNN can identify the system topology very accurately (the
smaller the SNR, the greater the noise). Moreover, for well
trained neural network, the more missing data in the training
dataset, the greater the positive impact on the accuracy of the
prediction engine.

TABLE III
THE IDENTIFICATION ACCURACY OF THE INTERFERED DATASET

Test Scenarios Interference
SNR (dB)

Number
of Epochs

Best Validation
Accuracy (%)

Best Prediction
Accuracy (%)

Full Measurement 10 5 98.81 98.72
Full Measurement 10 10 98.81 98.81
Full Measurement 10 20 99.86 99.95
Full Measurement 20 20 100 100
Full Measurement 20-50∗ 20 100 100
Missing One Data - 20 100 100
Missing Two Data - 20 99.91 99.95
Missing One Data 20 20 100 99.95
Missing Two Data 20 20 100 99.95
Missing One Data 10 20 99.95 99.82
Missing Two Data 10 20 98.86 98.99
Missing Two Data 20-50∗ 20 100 100

*: the intensity of SNR is randomly selected in the range and applied
on each data sample.

TABLE IV
THE IDENTIFICATION ACCURACY (%) BY TRAINING AND TESTING THE

CNN IN DIFFERENT EXTENTS OF INTERFERENCES.

Test Data
Training Data 10dB SNR Missing One Data Missing Two Data

and 10dB SNR and 10dB SNR

40dB SNR 71.88 80.75 94.00

Missing One Data 72.75 80.63 93.6240dB SNR
Missing Two Data 72.13 82.13 94.5040dB SNR

In the second group of experiments, the training and testing
data are interfered with at different levels. We trained three
CNNs by applying the datasets (i) containing 10dB SNR,
(ii) containing one missing data with 10dB SNR, and (iii)
containing two missing data with 10dB SNR respectively. The
models are individually tested each with 800 samples (i.e.,
we generated 100 µPMU data for each network topology)
but with 40dB SNR. The network topology identification
accuracy is shown in Table IV. Note that when generating
the training dataset, the data are interfered by taking out
the missing entries first, then adding noise. On the contrary,
when testing the model, the data were added with noise first
and then the missing entries were added. The test data were
beyond the training dataset, which means the neural network
should identify the system topology by estimating from the
unknown input. For example, for µPMU data which contained
40dB SNR, using the network which was trained well by
the dataset containing 10dB SNR to estimate the system
topology will result in an overall identification accuracy of
71.88%. All these 9 cases achieve the accuracy greater than
70%. One can see that using the same testing data, if the
training data has imperfections such as missing, and/or outlier
values, interferences, but under a certain level, the trained
neural network can provide more accurate results. This is
because the training data’s imperfections or complications can
make the neural network become more versatile, and thus, the
trained network would perform better. In all, the trained CNN
under the greatest level of interference achieves a satisfactory
topology identification accuracy, implying the proposed CNN
has a very good capacity of generalizing the trained data to
unseen inputs.
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V. CONCLUSION

This paper presented a deep learning framework for on-
line detection of power distribution system topology. The
proposed framework can handle missing measurements under
unbalanced operating states. The experiments show that the
proposed CNN not only handles the data with the same level
of interference (noise and missing measurements), but also
has the capacity of estimating the interfered data which has
different distributions from the training examples. Numerical
experiments proved that our trained network can accurately
identify the network topology corresponding to the observed
data beyond the training dataset.

CNN was chosen as the machine learning engine in the
proposed framework owing to its simplicity and efficiency for
handling large-size three-phase data. Other machine learning
models such as Autoencoder (AE) and Capsule Neural Net-
work (CapsNet) could be potential candidates as well. Our
future research will continue to explore utilizing more µPMU
data in larger systems, such as the IEEE 123-bus distribution
system, and different machine learning models for detecting
the topology changes in power distribution systems.
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