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a b s t r a c t

The virtual power plant (VPP) breaks the geographical restrictions of environment and resource types
by virtue of aggregating the distributed energy resources and dispatchable loads. In view of the
impact of large-scale energy consumption by users on the operational safety of VPP, based on the
existing demand response (DR) researches, this paper adds a penalty mechanism for the reasonable
management of loads. For the difference of resources in multiple VPPs, the current researches ignore
the energy interaction between different VPPs, and the external operator is introduced innovatively in
this paper to coordinate the real-time complementation of regional energy. Considering the uncertainty
from renewable energy and load, a two-stage scheduling strategy for VPP with multi-time scale
optimization is proposed, including a long-time scale day-ahead scheduling and a short-time scale real-
time scheduling. On the basis of DR and unit constraints, the resource scheduling plan is formulated in
the day-ahead stage. In the real-time stage, the energy complementation between VPPs is considered
under the framework of rolling optimization for the correction of the previous plan. The scheduling
of both stages is aimed at the economic operation of the VPP. Simulation results show that the DR
flexibly optimizes the load distribution while bringing economic benefits, and the total profit can be
increased by up to 6.65%. Moreover, the results show that the energy interaction under the external
operator coordination significantly reduces the total correction cost by up to 8.23%, and the correction
cost is decreased with the extension of the rolling optimization scheduling period.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The world is transforming its energy system from one domi-
ated by fossil fuel combustion to one with net-zero emissions of
arbon dioxide (CO2) and primarily composed of a large amount
of distributed energy resources (DER). The Chinese government
has committed to peak CO2 emissions by 2030, reducing CO2
missions per unit of GDP by 60%–65% from 2005 levels (Sheng
t al., 2021). Compared with the centralized power generation,
ER has the advantages of economy, flexibility, environmental
rotection, reliability and other aspects. Therefore, the research
n the effective utilization of DER is of great practical value.
However, the strong intermittent behaviors in the cumula-

ive power generation of DER bring negative impacts on grid
ntegration (Yang et al., 2019). In addition, the small capacity
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nc-nd/4.0/).
and geographically dispersed locations make DER difficult to be
regulated accurately by the power grid (Wang and Wu, 2021). To
address those challenges, virtual power plant (VPP), serves as an
aggregator that facilitates the interaction between the DERs and
the distribution level energy consumers is developed. VPP has the
functions of power generation, distribution, sale, and purchase, it
can participate in the electricity market as an independent power
retailer (Zhang et al., 2019). The successful implementation of
VPP relies on reasonable scheduling of internal resources, such as
micro-gas turbines, fuel cells, and dispatchable loads (Zhou et al.,
2016). Hence, the scheduling strategy of VPP becomes a research
hotspot (Ju et al., 2019).

Hadayeghparast et al. (2019) proposed a multi-objective op-
erational scheduling of DER in VPP based on the expected day-
ahead benefits and emission. Akkaş and Çam (2020) explored the
day-ahead adjustment of the entire generation system of VPP. In
Shayegan-Rad et al. (2017), a day-ahead scheduling framework
for VPP in a joint energy and regulation reserve markets was
presented. Zamani et al. (2016a) explored a probabilistic model

for optimal day-ahead scheduling of electrical and thermal energy
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esources in a VPP. Yuan et al. (2014) illustrate a real-time control
trategy in dispatching active power among units to balance the
ower deviation. In Zhu et al. (2019), the real-time economic
ispatch of VPPs was studied on the basis of various interests of
PPs and a system operator. Most of the VPP optimal dispatch
esearches focus on either the day-ahead scheduling or real-
ime scheduling, whereas the combination of different scheduling
trategies for all scheduling stages is limited.
The massive consumption of DERs in VPPs urgently requires

he research on demand response (DR) of users for the effective
emand side scheduling. DR is a program that compensates the
ower consumers for reducing or transferring the power load
uring peak hours of electricity usage, and the program is pre-
et in the form of contracts (Yang et al., 2021). In addition,
ser satisfaction with electricity consumption is a key indicator
o measure the effect of DR (Mishra et al., 2019). Chen et al.
2021) constructed the electricity consumption satisfaction func-
ion and set different compensatory prices to dispatch residential
oads. Aalami et al. (2010) developed an extended responsive
oad model based on DR contracts to improve load profile char-
cteristics and user satisfaction. In Royapoor et al. (2020), a
ommercial building was selected as the VPP and various dis-
atchable loads including air conditioners, lighting, and pumps
ere used to illustrate building’s DR capability. In Vahedipour-
ahraie et al. (2021), the curtailment and shift options for dis-
atchable loads were used by customers under DR contracts to
inimize the consumption costs. These studies have confirmed

hat DR plays an important role in the interactions between
nergy users and VPP, that is, flexibly optimizes the load dis-
ribution on the premise of ensuring user satisfaction. However,
he current studies on DR contracts mainly focus on the com-
ensation mechanism for users, and rarely consider the penalty
echanism for the over-responsiveness of users, which would
xacerbate load fluctuations in some periods.
The scheduling strategy of VPP is based on forecast data, there-

ore, the uncertainties from wind power, solar power, and load
annot be ignored (Zamani et al., 2016b). The robust optimiza-
ion (RO), distributionally robust optimization (DRO), scenario-
ased method, and model predictive control (MPC) method are
ommon solutions to deal with uncertainties. RO uses the bound-
ry information of uncertainties to form an uncertainty set, and
elects the worst scenario in the uncertainty set for optimal
ecision-making (Du et al., 2019). Compared to RO with uncer-
ainty sets, the probabilistic modeling of uncertainty is required
or DRO (Zhou et al., 2021). Due to the difficulty of incorporat-
ng analytical probabilistic models into the optimization model,
imited discrete scenarios are used to replace the probabilistic
odel in the DRO solution process (Du et al., 2021). Whereas

he scenario-based method can reduce the computational com-
lexity caused by large numbers of discrete scenarios, and ef-
ectively improve the computational efficiency of optimization
roblems (Vagropoulos et al., 2016). Compared with uncertainty
ets, discrete scenarios obtained by the scenario-based method
an bring more reliable and stable decision-making solutions in
ower system uncertainty optimization (Seljom et al., 2021). On
hort time scales, MPC has unique advantages in dealing with
ncertainties due to its rolling optimization mechanism based on
he updated data (Grimm et al., 2021).

In recent years, researchers have carried out in-depth re-
earches on the scenario-based method and MPC. However, in the
xisting researches, the method of modeling uncertainty in multi-
ime scale is relatively single, which is manifested as adopting
he same method in different time scales. Wang et al. (2021)
xplored the application of scenario generation and reduction
ethods in wind speed simulation. Naughton et al. (2020) pre-

ented a scenario-based approach to operating a multi-energy
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VPP under uncertainty. In Ju et al. (2016), a scenario-based frame
was proposed for analyzing the output of photovoltaic generators
and wind power plants. In Nguyen et al. (2018), a scenario-based
optimization approach was used to solve a three-stage stochastic
program. Castillo et al. (2019) studied the application of MPC
in hourly scheduling of VPP operators by rolling optimization.
Xiao et al. (2020) conducted the rolling optimization of spot price
through MPC. Considering compressed air energy storage wind
turbine, Rahimi et al. (2022) introduced the MPC applied in the
day-ahead and real-time scheduling. In Yi et al. (2020), the day-
ahead bidding and real-time operation were both achieved by
the MPC. Therefore, in the multi-time scale optimization, there
is a lot of research space to study the combination of uncertainty
processing methods based on different time scales.

Moreover, due to the interference from uncertainty, for two
adjacent scheduling stages, the previous dispatch plan would be
corrected by the latter stage. To balance the deviation, Mohy
Ud Din et al. (2019) proposed an idea of the information and
power exchange between VPPs in the real-time market. In Jha
et al. (2021), a collaborative scheduling model of VPPs was
established, but the energy interactions between VPPs is not
considered in this model. In Lyu and Wang (2019), the peer-to-
peer mechanism of power trading between VPPs was designed,
whereas this direct transaction mechanism has the risk of dis-
order due to the lack of operator management. Overall, there
are few studies on the external operator coordinating the in-
teractions between VPPs, and the current research on the VPP
operator is limited to the role of internal aggregation resources
dispatch. For example, in Asl et al. (2021), an energy management
model was established to coordinate the distribution of benefits
between VPP operator and distributed renewable resources, and
in Vahedipour-Dahraie et al. (2020), the effects of the VPP op-
erator’s risk-averse behavior on the VPP internal energy and its
security performance were investigated. Therefore, in view of the
successful application of the operator for energy coordination and
complementation in the intelligent building cluster (IBC) (Dou
et al., 2021), intelligent residential communities (Huang, 2014),
and integrated energy system (IES) (Yu et al., 2021; Yan et al.,
2019), the VPP cluster operator (VPPCO) would be introduced to
effectively coordinate and manage the energy and information
interaction among multiple VPPs.

Based on the above analysis, the optimization scheduling of
VPP still has a lot of research space. It is embodied in: the joint
dispatch of VPP in multi-scheduling stages, the combined use of
scenario-based approach and MPC method to address the uncer-
tainty, the coordination role of VPPCO for interactions between
VPPs, and the optimization role of DR for interactions between
VPP and energy users. In response to these problems, this paper
proposes a two-stage scheduling strategy for VPP with multi-time
scale optimization, which consists of a long-time scale day-ahead
scheduling and a short-time scale real-time scheduling. The main
contributions of this paper are summarized as follows.
(1) Considering the uncertainty of wind power, photovoltaics,
and load, the scenario-based approach is used in the day-ahead
scheduling to form a preliminary dispatch plan. Based on the MPC
method, the real-time scheduling corrects the day-ahead scheme
through rolling optimization on a reduced time scale.
(2) An improved DR program is developed in this paper, which
takes fully account of both the compensation and penalty mech-
anism in the form of bilateral contract between VPP and energy
users for a reasonable response.
(3) The concept of VPPCO is proposed in this paper, which pro-
vides a platform in the real-time stage for the energy and infor-
mation interactions between VPPs. The VPPCO will be beneficial
for the energy coordination and complementation while reducing

correction costs for real-time scheduling.
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Fig. 1. The VPP operational structure.
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Fig. 2. The structure of scenario set generation tree.

The remainder of the paper is organized as follows: Section 2
ntroduces the structure of VPP and its optimization method,
ncluding the operational structure of VPP, and the frameworks
f scenario-based approach and multi-time scale optimization.
ection 3 establishes mathematic models of VPP including objec-
ive functions and constraints. Case study and result analysis are
resented in Section 4. Section 5 draws the conclusion.

. The structure of VPP and its optimization methods

.1. Operational structure of VPP

In terms of the scheduling objects of VPP, the power load can
e divided into dispatchable load (DL) and non-dispatchable load
NDL), and the internal aggregation resources can be character-
zed as controllable ones and non-controllable ones. In this paper,
icro-gas turbines (MT), biomass boilers (BB), dispatchable load

DL), and energy storage system (ESS) are the controllable units,
hereas photovoltaics (PV) and the wind turbines (WT) are the
on-controllable units. The operation framework of VPP is shown
n Fig. 1. As shown in Fig. 1, based on the uploaded forecast infor-
ation from PV, WT, and load, the VPP dispatches its controllable
nits and purchases power in the electricity market to meet
he demand of energy users. Acting as an intermediary for the
eal-time transaction, the VPPCO collects the power information
f each VPP, and coordinates energy exchanges between VPPs
ccording to the principle of energy complementarity. For a VPP
ith excess power in the real-time stage, the surplus electricity

s sold to other VPPs with insufficient power through VPPCO, and
ach VPP participating in energy complementation is required to
7376
pay an agency fee to the VPPCO for its service. In addition, due
to the constraint from the power line transmission capacity, the
power exchange is limited.

2.2. Framework of scenario-based approach

In this paper, the load, and the power output of WT and PV
are treated as uncertainties and stochastic parameters, and the
combination of the three uncertainties constitutes the scenario
set. To transform the stochastic optimization problem into a de-
terministic one, a scenario-based approach involving scenario set
generation, selection, and elimination is adopted in the day-ahead
scheduling.

2.2.1. Scenario set generation method
The forecasted value of uncertainty is obtained from historical

data and the forecast error is determined by the corresponding
probability density function (PDF). According to the three-sigma
rule in normal distribution, the range of three times positive
and negative standard deviations can contain 99.7% of the likely
scenarios. In this paper, the forecast error follows normal dis-
tribution, the PDF of which with 0 as the mean is divided into
seven levels, namely, 0, ±1σ , ±2σ , ±3σ , and σ denotes the
tandard deviation of uncertainty. The roulette wheel mechanism
RWM) and Lattice Monte Carlo Simulations (LMCS) are applied
o achieve the hourly scenario generation for each stochastic
arameter (Niknam et al., 2012), and the forecasted value is
pdated after adding the corresponding forecast error of each
cenario. Fig. 2 illustrates the generation process of scenario set
n the form of a tree, the number of which generated in an hour
s 73

= 343.

2.2.2. Scenario set elimination method
To realize the elimination of scenario sets, the forward se-

lection (FS) technology is applied. Initially, only one scenario
set is retained, and the number of sets increases with the FS
operations. For each selection, the probability distance between
the retained and the selected scenario set would be the shortest,
and the probability of each scenario set is assigned according
to the distance between scenario sets (Gomes et al., 2021). The
SCENRED provided by GAMS is used for the scenario elimination,
and typical ones have been selected from the 343 scenario sets in
each hour. After the scenario elimination, the probability of each
scenario set is multiplied by the corresponding forecasted values
and summed to obtain the final values of uncertainties per hour.
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Fig. 3. The flow chart of two-stage scheduling with multi-time scale optimization.
.3. Framework of multi-time scale optimization

The multi-time scale optimization including the long-time
cale optimization in day-ahead stage and the short-time scale
olling optimization in real-time stage are shown in Fig. 3. For
he day-ahead stage with 24 h of scheduling period and 1 h of
ime scale, it can be subdivided into two steps. The first step
s to optimize the power load distribution by means of the DR-
ased load dispatch, and the second step is to formulate the
cheduling plan of each controllable unit and the transaction plan
n the electricity market based on the short-term forecast data.
ompared to the one-time optimization in day-ahead stage, the
olling optimization achieved by the MPC method schedules more
recisely by reducing time granularity (Zheng et al., 2018). In
his paper, the time scale of real-time rolling optimization is set
s 15 min, the scheduling period is 4 h, and the total number
f optimization periods in a day is 96. Specifically speaking,
or a scheduling period, based on the uploaded ultra-short-term
orecast data for 16 time periods, the VPP corrects the previous
cheduling schemes by adjusting the output of the aggregated
nits and trading power with other VPPs through VPPCO, whereas
nly the decisions that made in the first time period are going to
e executed. As shown in Fig. 3, the whole real-time scheduling
rocess is optimized on a rolling basis.

. Two-stage optimization model for VPP

.1. DR model in the day-ahead stage

.1.1. Objective function
According to the dispatch form of DR, the DL can be divided

nto shiftable load (SL) and interruptible load (IL). In this paper,
he compensation and penalty mechanism are developed with the
lectricity price that stipulated in a bilateral contract, consisting
f benchmark price, compensation price and penalty price, which
akes place of the traditional time-of-use price. To be more spe-
ific, users purchase power with the benchmark price, and driven
y the benchmark price signals, they can spontaneously shift
oads to other time periods. Under the incentive of the compensa-
ion price, they would interrupt part of their loads as scheduled.
oreover, to ensure the reasonable response of loads and the
perational safety of VPP, the range of hourly power consumption
s set by the contract based on the forecasted value, and the
enalty price would be added to users in case of the excessive
oad shift and interruption. In this paper, the satisfaction of users,

hich is applied to reflect the effect of DR, depends on the power

7377
purchase cost change. The objective function is formulated as
follows:

max I i = 1 −

∑T
t=1

∑S
s=1 H

i
t,s(P

i
rp,t,sWbp,t − P i

cu,t,sWdr,t + P i
eva,t,sWpen,t )∑T

t=1
∑S

s=1 H
i
t,sP

i
l,t,sW

i
tou,t

(1)

P i
eva,t,s =

⎧⎪⎪⎨⎪⎪⎩
P i
cp,t,min − P i

rp,t,s P i
rp,t,s < P i

cp,t,min

P i
rp,t,s − P i

cp,t,max P i
rp,t,s > P i

cp,t,max

0 else

(2)

where i is the VPP number; t is the time step; T is the length
of the planning horizon; s is the scenario set number; S is the
volume of scenario sets; H i

t,s is the probability of scenario set s at
time t; I i reflects the degree of user satisfaction in VPPi; P i

l,t,s is the
forecast load of VPPi at time t in scenario set s; W i

tou,t is the time-
of-use price of VPPi at time t; P i

rp,t,s is the actual load of VPPi after
DR at time t in scenario set s;Wbp,t is the benchmark price at time
t; P i

cu,t,s denotes the IL of VPPi at time t in scenario set s; Wdr,t is
the compensation price at time t; P i

eva,t,s denotes the electricity
usage deviation to be punished by VPPi at time t in scenario set
s; P i

cp,t,min and P i
cp,t,max are the minimum and maximum hourly

allowed power consumption restricted by VPPi at time t; Wpen,t
is the penalty price at time t.

3.1.2. Constraints
(1) Balance constraint of dispatchable load
As mentioned above, the DL can be transferred or interrupted

correspondingly in compliance with DR, and the balance con-
straint is as follow:

P i
rp,t,s = P i

l,t,s − P i
cu,t,s −

(
P i
tran,t,s − P i

trap,t,s

)
(3)

where P i
tran,t,s denotes the SL of VPPi in scenario set s transferred

from time t to other time periods, and P i
trap,t,s denotes the SL

transferred from other time periods to time t.
(2) Balance constraint of shiftable load
The total transferred-volume of SL, including load transferred-

in and transferred-out, is zero within a planning horizon. The
equation of SL transferred in a planning horizon is:
T∑

t=1

P i
tran,t,s −

T∑
t=1

P i
trap,t,s = 0 (4)

(3) Upper and lower limits of interruptible load and shiftable load
Constraints (5)–(7) restrict the dispatch range of IL and SL.

0 ≤ P i
≤ U i ∂ i P i (5)
cu,t,s a,t cu l,t,s
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≤ P i
trap,t,s ≤ U i

b,t∂
i
traP

i
l,t,s (6)

0 ≤ P i
tran,t,s ≤ U i

c,t∂
i
traP

i
l,t,s (7)

where U i
a,t is a binary variable determines the dispatch of IL at

time t; 1 means the load interrupted, 0 means no load being
interrupted; U i

b,t and U i
c,t are binary variables that represent the

load transferred in or out at time t, respectively; 1 means the
load is shifted, and 0 means no load is shifted; ∂ i

cu denotes the
maximum proportion of IL in VPPi at time t, and ∂ i

tra denotes the
maximum proportion of SL in VPPi at time t.

(4) Dispatch constraints of interruptible load and shiftable load
To reduce the negative impact from sacrificing the user satis-

faction in changing the power consumption behavior, the maxi-
mum number of dispatch and consecutive dispatch of IL within
one planning horizon is limited. Due to the process of load shift
is spontaneous, the maximum number of dispatch of SL within
one planning horizon would also be restricted for orderly transfer.
In addition, the SL cannot carry out the load transferred-out and
transferred-in simultaneously at time t. Constraints of IL and SL
dispatch are shown in (8)–(9) and (10)–(11), respectively:

T∑
t=1

U i
a,t ≤ Lcu,max (8)

t+Tcu,max∑
t=t0

U i
a,t ≤ Tcu,max m ∈ [1, T−Tcu,max] (9)

T∑
t=1

(U i
b,t + U i

c,t ) ≤ Ltra,max (10)

i
b,t + U i

c,t ≤ 1 (11)

here Lcu,max and Ltra,max denote the maximum number of dis-
atches for IL and SL; Tcu,max is the maximum number of consec-
tive dispatches for IL.

.2. VPP optimal scheduling model in the day-ahead stage

.2.1. Objective function
Fig. 4 illustrates the money flow apropos VPP, electricity mar-

et, and energy users participating in DR. As shown in Fig. 4,
he revenue of VPP comes from the power sale income (A) and
he penalty of users for DR contract breach (B), the cost origi-
ates in the compensation for load interruption of users (C), the
ower purchase expenditure in the electricity market (D), and the
nternal operating expenses which includes the environmental
ost (E)-(F), MT operating cost (G)-(H), BB operating cost (I)-(J),
nd ESS rental cost (K). The objective function of VPP optimal
cheduling in the day-ahead optimization is the maximum profit,
hich can be calculated as follows:

max Ri
=

T∑
t=1

S∑
s=1

H i
t,s

(
P i
rp,t,sWbp,t + P i

eva,t,sWpen,t

− P i
cu,t,sWdr,t − P i

buy,tWbuy,t
)
−

T∑
t=1

C i
vpp,t (12)

i
vpp,t = C i

en,t + C i
mt,t + C i

bio,t + C i
ess,t (13)

here Ri represents the profit gained by VPPi; P i
buy,t represents

he power purchased in the electricity market at time t; Wbuy,t
represents the power purchase price at time t; C i

vpp,t represents
the operation cost of VPPi at time t; C i

en,t , C
i
mt,t , C

i
bio,t , and C i

ess,t
denote the cost of pollution emission, MT operating, BB operating
and ESS rent at time t, respectively.

Due to both MT and BB emit carbon dioxide, sulfide, and

nitride during operation, the pollution emission penalty of VPP

7378
Fig. 4. The structure of money flow.

is calculated as follow:

C i
en,t = P i

mt,t

(
θmt,SO2CSO2 + θmt,NOXCNOX + θmt,CO2CCO2

)
+ P i

bio,t

(
θbio,SO2CSO2 + θbio,NOXCNOX + θbio,CO2CCO2

)
(14)

where P i
mt,t and P i

bio,t are the output of MT and BB in VPPi; θmt,SO2 ,
θmt,NOX , θmt,CO2 , and θbio,SO2 , θbio,NOX , θbio,CO2 denote the emission
factors of SO2, NOX, and CO2 of MT and BB at time t, respectively;
CSO2 , CNOX , and CCO2 denote the externality cost of SO2, NOX, and
CO2 pollution.

To improve the flexibility and economy of optimization, the
start–stop plans of MT and BB considering the intermittent power
generation are scheduled in this paper, and the change of oper-
ating status would incur additional costs. As illustrated in Fig. 4,
the operation costs of MT and BB composes of start–stop costs,
(H) and (J), as well as raw material costs for natural gas (NG)
and biomass consumption, (G) and (I), which can be calculated
in (15)–(16).

C i
mt,t =

P i
mt,t

n1k1
Wgas + U i

smt,tWsmt (15)

C i
bio,t =

P i
bio,t

n2k2
Wbio + U i

sbio,tWsbio (16)

here n1 and n2 represent the generating efficiency of MT and
B in VPPi; k1 and k2 represent the low heating value (LHV) of
G and biomass; U i

smt,t and U i
sbio,t denote the binary variables

etermining the start–stop state of MT and BB at time t, 1 means
that there exists the change of operation state at time t, 0 means
no change in operation state at time t; Wsmt and Wsbio denote the
start–stop costs of MT and BB.

In addition, both the charging and discharging status of ESS are
controlled to stabilize the uncertainty and volatility of renewable
energy output. The rental cost of ESS is as follow:

C i
ess,t = (P i

ess,dis,t + P i
ess,ch,t )Wrent (17)

where P i
ess,dis,t and P i

ess,dis,t denote the power discharged or charged
in VPPi at time t; Wrent is the rental cost per unit of capacity.

3.2.2. Constraints
(1) Electricity balance constraint of VPP
Eq. (18) shows the electricity balance during the operation

of VPP, which considers the power transaction, generation, and
storage.

P i
= P i

+P i
+P i

+P i
+P i

+P i
−P i (18)
rp,t,s buy,t wt,t,s pv,t,s bio,t mt,t ess,dis,t ess,ch,t
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here P i
wt,t,s is the day-ahead forecast output of WT in VPPi at

ime t in scenario set s; P i
pv,t,s is the day-ahead forecast output of

V in VPPi at time t in scenario set s;
(2) Upper and lower limits of power purchase
In the day-ahead stage, the VPP enters into a power purchase

ontract with the electricity market, which is subject to the
ollowing constraint:
i
buy,min ≤ P i

buy,t ≤ P i
buy,max (19)

here P i
buy,max and P i

buy,min are the upper and lower limits of the
ower purchased by VPPi in the electricity market.
(3) Operational constraints of the micro-gas turbine
Constraint (20) restricts the hourly output of MT, constraint

21) restricts the ramping and descending rate of MT and con-
traint (22) indicates the relationship between the start–stop
ction and the operation state of MT.
i
mt,tP

i
mt,min ≤ P i

mt,t ≤ U i
mt,tP

i
mt,max (20)

− kird,max ≤ P i
mt,t+1 − P i

mt,t ≤ kiru,max (21)
i
mt,t − U i

mt,t−1 ≤ U i
smt,t (22)

where U i
mt,t is the binary variable determining the operation state

of MT in VPPi at time t, 1 means the start state, and 0 means
the stop state; P i

mt,min and P i
mt,max denote the minimum and

maximum power output of MT in VPPi; kiru,max is the maximum
ramping rate of MT in VPPi; kird,max is the maximum descending
rate of MT in VPPi.

(4) Operational constraints of the biomass boiler
Constraint (23) restricts the hourly output of BB. Constraint

(24) restricts its start–stop action and operation state.

U i
bio,tP

i
bio,min ≤ P i

bio,t ≤ U i
bio,tP

i
bio,max (23)

U i
bio,t − U i

bio,t−1 ≤ U i
sbio,t (24)

where U i
bio,t is the binary variable determining the operation state

of BB in VPPi at time t, 1 means the state of start, 0 means
the state of stop; P i

bio,min and P i
bio,max denote the minimum and

maximum power output of BB in VPPi.
(5) Energy balance constraints of the energy storage system
The state of charge (SOC) of ESS at time t is a function of SOC

at the previous time t−1, and the final SOC would be equal to the
initial SOC. The constraints are as follows:

P i
ess,t = P i

ess,t−1 −
P i
ess,dis,t−1

ηdis
+ P i

ess,ch,t−1ηch (25)

i
ess,t=0 = P i

ess,t=24 (26)
i
rSOCmin ≤ P i

ess,t ≤ E i
rSOCmax (27)

where P i
ess,t denotes the energy stored of ESS in VPPi at time

t; ηdis is the discharging efficiency of ESS; ηch is the charging
efficiency of ESS; E i

r is the rated capacity of ESS in VPPi; SOCmin
and SOCmax are the minimum and maximum storage state of ESS,
respectively.

(6) Input and output constraints of the energy storage system
It should be noted that ESS cannot be charged and discharged

at the same time, the hourly output and input of ESS are limited
by constraints (28)–(30).

0 ≤ P i
ess,ch,t ≤ U i

ch,tE
i
rSOCmax (28)

0 ≤ P i
ess,dis,t ≤ U i

dis,tE
i
rSOCmax (29)

U i
dis,t + U i

ch,t ≤ 1 (30)

where U i
ch,t and U i

dis,t are binary variables determining the state
of charge and discharge of ESS in VPPi at time t, 1 means the ESS
is charged or discharged, and 0 means no charge or discharge.
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3.3. Correction model in the real-time stage

3.3.1. Objective function
Due to the deviations between the day-ahead and real-time

forecasts of WT, PV output, and power load, there will be a differ-
ence between the scheduling plan and the actual operation, it is
necessary to correct the day-ahead scheduling plan. For a VPP, the
forecast deviations are counterbalanced by the adjustment of MT
and BB output, as well as the energy interaction with other VPPs.
Given the impact of frequent charge and discharge operations on
the battery life caused by the rolling optimization, the correction
to ESS is not considered in the real-time scheduling. In addition,
since the load dispatch and electricity market transaction plans
have been previously determined in the form of contracts, they
are no longer real-time corrected. As mentioned above, the power
trading between VPPs is coordinated uniformly by the VPPCO to
realize the complementarity of the surplus or insufficient power
of each VPP, the objective function is the minimum correction
cost, which is formulated as follow:

min C i
rev =

t+∆T∑
t=t0

[β1

N∑
k=1,k̸=i

(P i
vppin,t,k + P i

vppout,t,k)

+ β2

N∑
k=1,k̸=i

P i
vppin,t,k − β3

N∑
k=1,k̸=i

P i
vppout,t,k + C i

mtrev,t + C i
biorev,t ]

(31)

where t0 is the initial time of rolling optimization; ∆T is the
length of scheduling period of rolling optimization; k is the VPP
number; C i

rev represents the correction cost of VPPi; P i
vppin,t,k

denotes the volume of power purchased from other VPPs by VPPi
at time t; P i

vppout,t,k denotes the volume of power sold to other
VPPs by VPPi at time t; C i

mtrev,t is the adjustment cost of MT
in VPPi at time t, the formula of which meet Eq. (15); C i

biorev,t
is the adjustment cost of BB in VPPi at time t, the formula of
which meet Eq. (16); β1 denotes the agency fee of VPPCO for unit
of electricity; β2 and β3 denote the electricity prices for power
purchase and sale between VPPs, respectively.

3.3.2. Constraints
(1) Electricity balance constraints
Eqs. (32)–(35) show the incremental balance of electricity.

∆P i
pv,t + ∆P i

wt,t + ∆P i
l,t =

N∑
k=1,k̸=i

(P i
vppin,t,k − P i

vppout,t,k)

+ P i
mtrev,t − P i

mt,t + P i
biorev,t − P i

bio,t (32)

∆P i
pv,t = P i

pvrev,t −

S∑
s=1

H i
t,sP

i
pv,t,s (33)

∆P i
wt,t = P i

wtrev,t −

S∑
s=1

H i
t,sP

i
wt,t,s (34)

∆P i
l,t = P i

lrev,t −

S∑
s=1

H i
t,sP

i
l,t,s (35)

where P i
pvrev,t , P

i
wtrev,t , and P i

lrev,t are real-time forecasts of PV, WT
output, and load in VPPi at time t, respectively; ∆P i

pv,t , ∆P i
wt,t ,

and ∆P i
l,t are the forecast deviations of PV, WT output, and load

in VPPi at time t; P i
mtrev,t and P i

biorev,t are the corrected outputs
of MT and BB in VPPi at time t, and the constraints of which are
consistent with constraints (20)–(24).

(2) Constraints of the energy interaction
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Table 1
Interruptible load and shiftable load parameters.
Parameters IL in VPP1 SL in VPP1 IL in VPP2 SL in VPP2 IL in VPP3 SL in VPP3

Maximum proportion 5% 7% 4% 8% 6% 6%
Maximum number of dispatches 10 8 8 10 8 8
Maximum number of consecutive dispatches 3 4 3 4 3 3
Constraints (36)–(37) ensures the power exchange in a time
eriod do not exceed the maximum power transmission limit
f lines, and constraints (38)–(39) restrict the power purchase
r sale decision of VPP at time t. Constraint (40) ensures that a
PP cannot carry out the purchase and sale of electricity simulta-
eously, by not allowing bidirectional energy flow between two
PPs in the same time period.

≤ P i
vppin,t,k ≤ U i

in,tPvpptra,max (36)

≤ P i
vppout,t,k ≤ U i

out,tPvpptra,max (37)

≤ P i
vppin,t,k ≤ U i

in,t

⏐⏐∆Pk
pv,t + ∆Pk

wt,t + ∆Pk
l,t

⏐⏐ (38)

≤ P i
vppout,t,k ≤ U i

out,t

⏐⏐∆Pk
pv,t + ∆Pk

wt,t + ∆Pk
l,t

⏐⏐ (39)
i
in,t + U i

out,t ≤ 1 (40)

where Pvpptra,t,max denotes the maximum capacity of power trans-
mission line; U i

in,t and U i
out,t are binary variables determine the

nergy interaction option of VPPi at time t, 1 means electricity is
raded between VPPs, 0 means no energy interaction.

. Case study

.1. Basic data

In this case study, based on the MATLAB and GAMS platform,
he proposed two-stage scheduling strategy with multi-time scale
hown in Fig. 4 is validated under the environment of the Win10
perating system. The dispatch parameters of IL and SL are shown
n Table 1, the unit technical parameters are shown in Table 2,
nd the operation parameters of VPPCO are shown in Table 3.
typical day in a residential area of Shanghai is selected to

erform the day-ahead and real-time optimization scheduling.
he residential area is assumed to have three VPPs (VPP1, VPP2,
nd VPP3) operating at different locations and three VPPs are put
nto operation. As the day-ahead forecasted load curves shown
n Fig. 5, users in this area are classified as daily-night peak
ype users, night peak type users, and stationary type users.
hose users are scheduled by VPP1, VPP2, and VPP3, the standard
eviation of power load is set at 3% of the forecasted value. For
he minimum and maximum hourly allowed power consumption
f users, values of them are set at 95% and 105% of the hourly
ower load, respectively. Figs. 6–7 show the day-ahead and real-
ime forecasted wind power and photovoltaic output curves, the
tandard deviations of them are both set at 10% of their forecasted
alues. It is assumed that the contract price of power purchase
igned in advance are 0.4¥/(kW h). The time-of-use price, and
rices stipulated in the DR contract are shown in Fig. 8. For NG
nd biomass, the prices are assumed to be 3.5 ¥/m3 and 1.2 ¥/kg.

.2. Results analysis

Four cases designed to analyze various aspects of combined
ptimization of day-ahead and real-time stage are shown in
able 4. Case 1 considers the DR and VPPCO, and takes 4 h as
he scheduling period of rolling optimization. With the same
cheduling period, DR and VPPCO are not considered in case 2 and
respectively. Case 4 is the same as case 1 but with a different
cheduling period of rolling optimization.
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Table 2
Units parameters for VPP.
Parameters Unit Value

MTs Ramping rate kW/h 1000
Descending rate kW/h 1000
Minimum output kW 8000
Maximum output kW 500
Start–stop cost ¥/kW 150
Efficiency – 0.285
Emission factors of SO2 kg/(kW h) 0.0036
Emission factors of NOX kg/(kW h) 0.025
Emission factors of CO2 kg/(kW h) 0.724

BBs Minimum output kW 10000
Maximum output kW 500
Start–stop cost ¥/kW 120
Efficiency – 0.305
Emission factors of SO2 kg/(kW h) 0.0014
Emission factors of NOX kg/(kW h) 0.012
Emission factors of CO2 kg/(kW h) 0.429

ESS Rated capacity kW h 8000
Initial capacity kW h 4000
Minimum SOC – 0.1
Maximum SOC – 0.9
Discharging efficiency – 0.9
Charging efficiency – 0.9
Rental cost ¥/(kW h) 0.52

Table 3
Operation parameters for VPPCO.
Parameters Unit Value

Operation cost of VPPCO ¥/kW 0.141
Power purchase price ¥/(kW h) 0.456
Power sale price ¥/(kW h) 0.462
Maximum line capacity kW 1000

Table 4
Composition of four cases (✓ = components included, × = components
excluded).
Case DR VPPCO Scheduling period of rolling optimization (h)

1 ✓ ✓ 4
2 × ✓ 4
3 ✓ × 4
4 ✓ ✓ 8

4.2.1. Day-ahead scheduling results
To verify the accuracy and computing performance of the

scenario elimination proposed in this paper, VPP1 in case 1 is
taken as an example, and the 10, 50, 100, and 150 scenarios is
selected after the elimination, respectively. Table 5 shows the
total profit and computation time in the day-ahead stage. As
shown in Table 5, the number of scenarios has little effect on
the total profit, with 150 scenarios compared to 10 scenarios, the
total profit only increases by 0.49%. However, the computation
time increases significantly from 0.843 s to 1004 s. It can be
seen that the simulation with 10 scenarios has a good solution
accuracy and computation time. Considering the computational
burden in the VPP scheduling stage, 10 scenarios are selected for
the following analysis.

Fig. 9 shows the dispatch results of SL and IL in case 1. Load
in VPP1 is transferred from hour of 12–13 and 20–21 to hour
of 5–6 and 15–16, and the interrupted loads are accumulated
around hour of 11–13 and hour of 18–20. The volume of the load
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Fig. 5. Forecast power load in VPPs.
Fig. 6. Forecast power generation in the day-ahead stage.
Fig. 7. Forecast power generation in the real-time stage.
Fig. 8. Electricity prices for VPPs.

Table 5
Comparison of different scenarios of VPP1 in case 1.
Number of selected scenarios 10 50 100 150

Total profit (¥) 183,033 183,356 183,604 183,929
Computation time (s) 0.843 65 338 1004
7381
transferred and interrupted in VPP1 is balanced. The reason is that
two electricity consumption peaks in VPP1 are in the periods of
high benchmark electricity price, and the compensation price is
at high at the time as well, which encourages the consumers to
accept the DR offer and make a move. Load in VPP2 is transferred
from hour of 20–22 to hour of 4–6 and 9–10, and interrupted
during hour of 21–23. It should be noted that the volume of load
shifted obviously exceeds the load interrupted, that is because
the peak of electricity usage in VPP1 coincides with the peak
of benchmark electricity price, while the compensation price is
not at its peak, which makes consumers more inclined to shift
loads to other periods with lower benchmark electricity price.
For VPP3, the load is transferred from hour 14 and 16 to hour
1 and 4, and interrupted at hour 8, 20, and 22. It can be seen
that the dispatch of load is dispersed and not concentrated in a
certain period of time. Moreover, the number of load dispatched
in VPP3 is less than the numbers in the previous two VPPs. They
can be attributed to the lower load fluctuations, which results in
the effect of DR not being significant. In general, the load dispatch
of VPP1-3 indicates that under the guidance of the benchmark
price and the incentive of the compensation price, users tend
to reasonably reduce their electricity usage at peak hours, while
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Fig. 9. Load dispatch for VPPs.

flexibly transferring loads to periods with low electricity prices,
which is conducive to the optimized power load distribution and
the reduced peak-to-valley difference.

Fig. 10 shows the optimal day-ahead scheduling for VPPs in
case 1. It can be seen that the BB has the priority in operation,
that is because it has lower operating and environmental cost
compared to MT. It is worth noting that both MT and BB increase
their output during peak load periods, while for economical effi-
ciency, MT ceases its operation during some periods of the valley
load. Especially during hour of 1–4, there is no power generation
from PV and loads of the three VPPs are at a lower valley, VPPs
tend to purchase power from the electricity market to reduce the
output of BB and avoid frequent start–stops for MT. For ESS, it is
charged at the daytime when the penetration rate of renewable
energy is high or at night when both the load and electricity price
are low. Conversely, it is discharged when the load and electricity
price are high, so as to meet the load demand at peak period.

4.2.2. Economic analysis of DR
Table 6 is a comparative analysis of case 1 and 2, which shows

the day-ahead revenues and costs of VPPs after and before the DR.
For the costs of power purchase and revenues from power sale,
decreases are seen in the three VPPs after DR. The decline in costs
can be attributed by the demand reduction of power purchase,
which is resulted from the load interruption. Moreover, the oper-
ation costs of VPPs in case 1 is lower than those in case 2. It can be
attributed by the peak load shifting through load transfer and in-
7382
Fig. 10. Optimal day-ahead scheduling for VPPs.

terruption, which reduces the output of controllable units during
peak periods and avoids the frequent start and stop operations
during valley periods. The total profits increase after participating
in DR, rising by 6.65%, 5.87%, and 4.54% in VPP1-3, respectively,
and the computation time also increases. Considering that the
computation time is at the millisecond level, it can fully meet
the requirements of day-ahead scheduling. Combining Fig. 9 and
Table 6, it can be seen that the DR brings significant economic
benefits while optimizing the power load distribution.

4.2.3. Economic analysis of VPPCO
By comparing the scheduling results of cases 1 and 3, the

effects of VPPCO for the real-time correction can be obtained. As
shown in Table 7, the total correction cost in case 3 is higher
than that in case 1, mainly because the adjustment expenses of
MT and BB in case 3 cost much more. Since only the outputs of
controllable units are adjusted in case 3, without considering the
coordination role of VPPCO, MT and BB are forced to start and
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Table 6
Economic analysis of DR in the day-ahead stage.
Cases VPP number Power purchase

cost (¥)
Power sale
revenue (¥)

Compensation
cost (¥)

Penalty income
(¥)

VPP operation
cost (¥)

Total profit (¥) Computation time
(ms)

1
VPP1 78,519 428,824 2,006 969 166,235 183,033 843
VPP2 80,047 435,213 1,358 814 165,148 189,474 815
VPP3 80,216 412,325 1,823 825 145,117 185,994 771

2
VPP1 82,504 434,289 – – 180,168 171,617 613
VPP2 83,125 442,106 – – 180,014 178,967 697
VPP3 81,121 416,421 – – 157,386 177,914 618
Table 7
Economic analysis of VPPCO.
Cases VPP number Revenue from

power sale (¥)
Cost of power
purchase (¥)

Operation cost
of VPPCO (¥)

Adjustment cost
of MT (¥)

Adjustment
cost of BB (¥)

Total cost (¥) Computation
time (s)

1
VPP1 6,581 8,955 4,777 70,509 70,588 148,248 21
VPP2 9,394 6,858 4,987 66,450 72,609 141,510 23
VPP3 8,755 7,397 4,959 46,709 84,077 134,387 20

3
VPP1 – – – 79,874 80,578 160,452 14
VPP2 – – – 71,645 77,847 149,492 16
VPP3 – – – 52,127 90,753 142,880 14
Table 8
Economic analysis of increased scheduling period.
VPP number Revenue from

power sale (¥)
Cost of power
purchase (¥)

Operation cost
of VPPCO (¥)

Adjustment cost
of MT (¥)

Adjustment
cost of BB (¥)

Total cost (¥) Computation
time (s)

VPP1 7,015 9,427 5,932 65,477 66,149 139,970 26
VPP2 9,686 7,145 6,046 63,645 67,543 134,693 29
VPP3 8,913 7,549 6,018 42,869 80,247 127,770 25
stop frequently to balance the forecast deviations, which results
in the significantly increased start–stop cost. Moreover, the total
cost of VPP1 is reduced by the most, at 8.23%, exceeding 5.64% of
VPP2 and 6.32% of VPP3. As shown in Fig. 7, the wind power of
VPP1 is lower during the peak of the daytime electricity usage,
which allows MT and BB to take on more output, so as to meet
the power demand. Hence, controllable units in VPP1 are more
susceptible to the forecast deviation. Although the computation
time increases as the internal power trading coordinated by the
VPPCO is taken into account, the complementary energy mitigates
the impact of real-time scheduling on the output adjustment of
MT and BB in the real-time stage, which accounts for the greatest
decrease of correction cost in VPP1.

4.2.4. Economic analysis of rolling optimization
Compared to case 1, the scheduling period of rolling opti-

ization is doubled in case 4. The extended scheduling period
eans that the VPP can obtain more forecast information of the

uture time periods before making decisions, which is conducive
o improving the scheduling scheme in the real-time stage. Fig. 11
llustrates details of the power exchange in case 1 and 4. As
hown in Fig. 11, in comparison with case 1, case 4 exists a rise in
he flexibility and volume of power purchased and sold. In view
f the increase in the response time and power information about
nergy complementation after the extension of the scheduling
eriod, it can be attributed to the adequate response of energy
nteraction to the real-time dispatch instructions. It is can be seen
rom Table 8 that the total correction cost decreases with the
ncrease of the scheduling period, dropped by 5.58%, 4.82%, and
.92% in VPP1, 2, and 3, respectively, and the costs of MT and
B decrease the most, that is because the optimization of power
rading under the improved scheduling plan in case 4, thereby
nhancing the effect of energy complementarity and reducing
he adjustment of controllable unit output. However, due to the
ncrease in the number of variables that need to be computed
ith the extension of the scheduling period, the computation
7383
time increases and the computation efficiency decreases cor-
respondingly. Therefore, in the real-time stage, the VPP needs
to weigh the economic and computational efficiency according
to its actual condition, so as to select an appropriate rolling
optimization scheduling period.

5. Conclusion

This paper proposes a two-stage scheduling strategy for VPP
with multi-time scale optimization, and the two scheduling strate-
gies are closely linked and collaboratively optimized. Multiple
cases are set up for comparative analysis, and the conclusions are
as follows:

(a) Under the premise of meeting power demand and ensuring
users’ satisfaction, DR improves the ability of power consumers to
actively respond and flexibly participate in the VPP dispatch and
brings considerable economic benefits. Moreover, the distribution
of power load is optimized and the peak-to-valley difference is
properly stabilized, which is conducive to the operational safety
of VPP.

(b) The VPPCO plays a vital role in the real-time stage. It is
manifested in the fact that the energy complementation between
VPPs is achieved by the VPPCO coordination, which significantly
improves economic efficiency and promotes the adequate con-
sumption of regional energy. Through the rolling optimization for
the real-time correction, scheduling schemes can be formulated
more accurately and reasonably, and the economy and flexibility
of the system operation can be greatly improved.

(c) By tracking the pollutant gas emissions of the aggregated
units, the environmental cost is considered in this paper. In
general, the environmental cost is aimed at pursuing a balance
between economy and environmental protection, which restricts
the output of controllable units, thereby promoting the full uti-
lization of renewable energy. Furthermore, the real-time cor-
rection balances the forecast deviation of wind power, photo-
voltaics and load, and the waste of wind power and photovoltaics



J. Cao, Y. Zheng, X. Han et al. Energy Reports 8 (2022) 7374–7385

c
p
p
p

h
f
m
a
t
a
m
o
p
w
p
i
o
b

C

Fig. 11. Energy interactions coordinated by VPPCO in case 1 and 4.
an be effectively mitigated, so as to maximize the low-carbon
erformance of VPP. Therefore, the optimal scheduling strategy
roposed in this paper can be served as the reference for the
ractical application of the environment-friendly VPP.
With the continuous progress of VPP, higher requirements

ave been put forward for the research on the economical, eco-
riendly, and safe operation. In this paper, the two-stage opti-
ization of the VPP is only preliminarily studied. There is still
lot of research space, and many aspects are simplified due

o the limited ability and time, such as the line loss, and the
pplication of artificial intelligence technology in the process of
odel solving. In the future work, we will consider the impact
f line loss, and explore the collaborative optimization of VPP
ower generation and distribution based on the distribution net-
ork system. Moreover, the further improvements in computing
erformance with artificial intelligence algorithms will be taken
nto account in the subsequent work. On this basis, the dynamic
ptimization of the scheduling period in the real-time stage will
e studied to balance economic and computational efficiency.
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