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Distributed Intelligence for Online Situational
Awareness in Power Grids
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Abstract—This paper presents a suite of analytics that are pro-
posed to be embedded in next-generation smart sensors in electric
power grids. The proposed analytics take the electrical signals
as the input and unlock the full potential in signal processing
and machine learning for real-time event detection and classifica-
tion. Meanwhile, a robust synchrophasor estimation mechanism is
housed within the proposed sensor technology that will be triggered
following a detected event and guides on the adaptive selection of
the best-fit (most accurate) synchrophasor estimation algorithms
at all times. Embedding such analytics within the sensor and closer
to where the waveforms are captured, the proposed distributed
intelligence solution technology mitigates the potential risks to
communication failures and latencies as well as malicious cyber
threats. Our experiments demonstrate that the introduced scheme
achieves improved quality of measurements with a promising event
detection and classification accuracy, collectively resulting in en-
hanced online situational awareness in modern power grids.

Index Terms—Feature extraction, event detection, machine
learning, situational awareness, signal processing, smart sensor,
synchrophasor estimation, waveform classification.

I. INTRODUCTION

A. Problem Statement and Existing Challenges

W IDESPREAD deployment of Phasor Measurement
Units (PMUs) has dramatically changed the traditional

sensing and measurement paradigms in power grids into a new
setting with high-resolution measurements [1]–[3]. Synchropha-
sors captured from distributed PMUs across the power grid have
transformed many control center analytics in power systems.
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PMUs are typically classified into two types, i.e., M-Class
PMUs providing measurements satisfying high-accuracy stan-
dard requirements or P-Class PMUs fulfilling the high-speed
low-latency measurement requirements. Relevant synchropha-
sor estimation algorithms within the PMU sensors are serving
real-time measurements for many end-use applications, e.g.,
online monitoring, protection and control, state estimation, dy-
namic stability assessment, power system model validation, and
post-event analyses [4]–[6].

The existing monitoring and control paradigms in power
systems are primarily based on centralized architectures. That
is, the sensing landscape consists of locally distributed PMUs,
the measurements from which are collected in distant control
centers for monitoring and control decision making. This cur-
rent practice relies heavily on reliable and secure communica-
tion gateways: if the communication channels are lost (due to
failures, natural disasters, or man-made cyber-attacks) or have
delays (due to communication network congestion, poor channel
quality, etc.), the accuracy and trustworthiness of the control
center analytics using such measurements would be compro-
mised or attributed a latency. Eliminating such potential risks,
system monitoring and control paradigms should enable fusing
the online measurements in a distributed manner; that is building
in distributed intelligence and translating the data into valuable
information closer to where the data is generated (i.e., in electric
substations).

Additionally, the trustworthiness of the control center func-
tions heavily relies on accurate synchrophasor measurements
from PMU sensors; these measurements are achieved from
synchrophasor estimation algorithms (SEAs) embedded within
the PMUs which are primarily driven by mathematical approxi-
mations, such as, Short Time Fourier Transform, Phase-Locked
Loops, Kalman Filtering, Newton Approximations, and many
other variations [7]–[12]. IEEE standard C37.118.1-2011 [13]
has established the definition of PMU outputs–i.e., magni-
tude, phase angle, frequency, and rate of change of frequency
(ROCOF)—and their corresponding measurement compliance.
In most cases, and with no consideration to the end-use ap-
plications utilizing the measurements, marketplace PMUs are
typically furnished with “only one” SEA tool, each unleashing
distinctive advantages and limitations, and are solely accurate for
one or a few certain applications using PMU measurements [14],
[15]. This is because the waveforms fed into PMUs have typ-
ically variant behaviors (e.g., during faults, unbalanced loads,
voltage surge or sag, harmonics, etc) [16], [17]. Also, different
applications using synchrophasor measurements may enforce
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different response time and accuracy requirements. Some re-
searchers proposed a single PMU scheme furnished with only
one sophisticated SEA, aiming to respond to all kinds of pre-
dictable or random conditions in the grid [18], [19]. Results from
both laboratory tests and field observations have revealed how
inefficient the PMU measurements could be, if this “one-size-
fits-all” SEA is applied to capture both static and dynamic fea-
tures and peculiarities in power systems, when facing different
operating states and driving phenomena. In particular, lab tests
in [20] have shown that some PMU outputs failed to be compliant
with the standard requirements under some operating conditions
such as off-nominal frequencies, modulations, etc. To overcome
this, adaptive phasor estimation approaches such as adaptive
filtering [21], adaptive window with localization of waveform
discontinuities [22], and magnitude/frequency dynamic identi-
fication [23], [24], etc., have been proposed and are available
in the literature. However, these adaptive control signals in
conventional adaptive phasor measurement methodologies can
only indicate the existence of dynamics in the waveforms, but
cannot provide sufficient information on the ongoing event or the
cause of the dynamics, thereby resulting in limited situational
awareness for the system operators. Furthermore, the phasor
measurements are still needed to be transmitted to distant control
centers for monitoring and control decisions, thereby in need
of fast and reliable communication channels yet vulnerable to
failures, delays, etc.

B. Literature Review

Event detection and classification are indeed one main focus
of what is called “online situational awareness” in power grids.
The term “situational awareness” in the context of electric power
grid operation is defined as “understanding the current environ-
ment and being able to accurately anticipate future problems
to enable effective actions” [25]. Situational awareness is a key
factor in preserving power system security, as it enables effective
and timely decision-making and adaptive control in response
to an unfolding incident [26]. Due to the increasing size and
operational complexity of modern power systems, transmission
system operators often have difficulties forming a complete and
accurate picture of the state of the system, limiting the level of
situational awareness that is needed to make the right decisions
and respond effectively to an incident. Inadequate situational
awareness has indeed been identified as one contributing factor
in several recent large electrical disturbances worldwide [27],
[28]. In November 2006, an inadequate situational awareness
initiated a cascade of events and resulted in the separation of the
European Grid into three regions with different frequencies [29].
According to [26], situational awareness encompasses three
separate levels: (1) achieving information on key elements of the
power grid; (2) Understanding what the perceived data means in
relation to the operators’ objectives; and (3) Projecting the future
behavior of the system components based on their current state
and on the perceived information.

The existing event detection and classification approaches
in the literature are mainly based on centralized architectures,
irrespective of how the phasor measurements are achieved.

A PMU measurement-based event detection mechanism using
dynamic programming-based swinging door trending algorithm
is proposed in [30]. This approach requires a huge amount of
streaming PMU data, and a time synchronization, uncongested
communication, and identical PMU communication delays. Re-
searchers in [31] proposed a centralized event detection algo-
rithm via computation of the spectral kurtosis on the sum of the
intrinsic mode functions. This approach relies on the continuous
data streams collected via PMUs installed at different locations
across the power grid. Therefore, it is vulnerable to communi-
cation losses or delays. Principal component analysis (PCA) is
one of the most popular multivariate statistical techniques for
dimensionality reduction and has been widely used in various
fields [32]. A PCA-based method for detection and classifi-
cation of multiple events using frequency data from multiple
PMUs is proposed in [33], which can detect loss of generation
and/or loads. Similarly, authors in [34] proposed a partitioned
PCA-based algorithm to reduce the computational burden in
analyzing volumes of PMU measurements. However, an event
detection and classification rule is still required for effective
decision making in real-time. An abnormal event detection
application using a micro-phasor measurement unit (μPMU)
in the distribution system is proposed in [35]. In response to
the challenges in processing multiple streams of high-resolution
data, a pooling-picking scheme is first applied, a kernel PCA
(kPCA) is then adopted to build the statistical models, and a
partially-hidden structured support vector machine (pSVM) is
finally used to classify and distinguish a variety of events. In
summary, the aforementioned approaches rely on centralized
analytics employing measurements from multiple PMUs across
the power grid through seamless communication channels. With
the massively-growing adoption of computing engines/nodes in
smart grids, a variety of distributed real-time analysis and con-
trol frameworks are proposed and implemented [36]–[40]. One
notable advantage of the distributed intelligent control compared
to the centralized mechanisms is the significant reduction in data
communication and complexity, resulting in better utilization of
the communication bandwidth.

C. Contributions

To the best of our knowledge, there is no scheme available
in the literature to address the detection and classification of
multiple events locally, particularly by relaying only on the
original waveforms captured on a single point of measurement.
Tackling the aforementioned challenges and for effectively ad-
dressing fast and slow-transient disruptions in power grids, this
paper introduces the next-generation smart sensors in power
grids. Embedded with advanced signal processing and machine
learning algorithms, the proposed smart sensor solution with
built-in intelligence enables a paradigm shift from sensing-only
to sensing-and-actuating mechanisms that can achieve decen-
tralized online event detection, classification, and high-fidelity
measurements in power grids. In an end-to-end modular plat-
form, the proposed smart sensor will trigger fast and robust
control actions against the detected disruptions. The main con-
tributions of this paper are as follows:
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� A pseudo-continuous quadrature wavelet transform (PCQ-
WT) is proposed that processes (voltage and current) wave-
forms and effectively performs an online pattern recogni-
tion and feature extraction.

� Built on the PCQ-WT-extracted features, a machine learn-
ing mechanism, i.e., the convolutional neural network
(CNN), is developed to detect and classify different event
scalograms in real-time.

� Founded on the Quadrature Delayed Signal Cancellation
(QDSC) and Gaussian Weighted Taylor series (GWT)
principles, two fast and accurate SEAs, which respectively
meet the IEEE standards for P-Class and M-Class mea-
surements, are developed.

� An efficient SEA selection scheme is proposed and housed
within the smart sensor that adaptively selects the most
promising SEA algorithm which best suites the detected
event and ensures high-fidelity measurements.

The rest of the paper is structured as follows: A big-picture
overview of the proposed sensor technology is introduced in
Section II. Section III presents a brief background on the wavelet
transforms and CNN. The proposed framework is analytically
elaborated in Section IV. The performance of each analytical
module within the proposed framework is numerically analyzed
under a variety of events in Section V. And finally come the
concluding remarks in Section VI.

II. THE BIG PICTURE OF THE PROPOSED SMART SENSOR

A. Problem Statement

It has been demonstrated in the existing literature that a
pre-installed SEA inside the PMU sensors needs to be chosen
carefully or tuned at times to meet the performance requirements
of the end-use applications employing the measurements [18],
[19]. While exposed to different operating conditions in the
power grid, a particular SEA may best work for one certain
type of event. Moreover, an SEA can be tuned with distinct
parameters, making it extremely difficult to achieve the desired
accuracy at all times. Therefore, the measurement performance
of the PMU would be improved if an event type could be detected
in real-time and, accordingly, a proper SEA is selected in an
automated manner.

Driven by the variant system operating conditions, waveforms
in the power grid reveal specific patterns with unique features
and peculiarities. For instance, waveform magnitudes and angles
can experience step changes during faults; measurement noise
can vary; the occurrence of voltage surge or sag, unbalanced
load conditions, harmonics, and frequency drift, etc., can also
be commonly observed in the waveform. The event classification
problem in power grids could be then decomposed into two steps.
First, the signatures and dominant patterns from the electrical
waveforms, which carry valuable information on the underlying
events, are extracted. Second, a classifier is employed for event
detection and classification based on the extracted features.

B. Overview of the Proposed Embedded Analytics

Fig. 1 illustrates the algorithmic process proposed to be
embedded within the smart sensors, characterized through the

Fig. 1. Big picture of the algorithmic process within a smart sensor.

following four stages: (i) signal acquisition, (ii) feature extrac-
tion, (iii) event detection; and (iv) SEA selection.

The proposed technology shares exact same input signals
(voltage and current) as the existing PMUs in power grids, with
no additional device nor investment for data acquisition. First,
the sampled waveforms captured by the Analog to Digital (A2D)
converter within the proposed sensor are loaded into the buffer.
Second, the original waveforms are individually processed and
features (scalograms) are extracted using the proposed PCQ-WT
signal processing algorithm. To accelerate the consequent event
classification, the scalograms are converted into images. The
event classification in the Third step is, therefore, recast as an
image classification process, where the scalograms are fed into
CNN modules running in the Graphical Processing Unit (GPU)
for event detection and classification. Since the processing time
must be sufficiently short for online applications, a simple CNN
architecture is proposed that also meets a designated accuracy
requirement under a wide range of fast- and slow-dynamic events
in power grids. The machine learning mechanism detects and
classifies the event attributes with a confidence level. Under
certain circumstances, the patterns/features in the scalograms
could be extremely similar for different types of events, and
the predicted event (with the highest confidence level) could
interchange between several types in a short transient period of
time. Hence, a threshold criterion for the output confidences is
established to make a solid decision on the event detection and
classification. Following the detected event (with the confidence
level above a threshold), an adaptive SEA selection mechanism
is devised in the fourth step that will adopt the most promising
SEA outputs among a suite of embedded SEAs (high-speed
and high-accuracy algorithms) for online measurements. If the
confidence level is reported lower than the designated threshold,
the system is concluded to be in its normal operating condition,
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and the default SEA output will be used for accurate measure-
ments. The hardware architecture of the proposed smart sensor
technology is illustrated in Appendix I in [41].

III. BACKGROUND

A. Cwt and Pseudo-Cwt

As the combinations of harmonic components contain valu-
able information; waveform time-frequency analytics can be uti-
lized to evaluate the signal signatures and dominant features, i.e.,
amplitude, frequency, and phase angle. Features that might be
undetected using one fixed resolution could be easily identified
by using other resolutions. In this regard, wavelet transforms
(WT) provide multi-resolution analysis and rich frequency infor-
mation about the original signal. Meanwhile, the event detection
module would benefit from the waveform features rather than
detailed harmonic frequency measurement. Therefore, in this
paper, wavelet analysis is selected as the main mathematical
tool for online feature extraction.

The wavelet transform can be seen as the computation of the
similarities between the signal of interest x(t) and the selected
wavelet, which can be written as follows:

X(ω|a, b) = 1√
|a|

∫ ∞

−∞
x(t)Ψ*

(
t− b

a

)
dt, (1)

where a and b are the scaling factor and time shift, Ψ(t) is
the selected wavelet (called mother wavelet when a = 1 and
b = 0), and “*” stands for complex conjugate operation. With
different values of a and b selected,Ψ( t−b

a ) becomes the “daugh-
ter wavelets” of Ψ(t) [42], [43]. With a proper selection of
continuous scaling factor intervals along with the time shifts,
a CWT is achieved.

In the smart sensor solution, the input waveforms are first
sampled; hence, the actual behavior of the conventional CWT
within the processor is discrete WT with a set of discrete scaling
factors ai, wherein, i is an integer. To obtain more informative
waveform features in the scalogram, a set of linearly-increasing
real numbers are assigned to i in the proposed Pseudo-CWT.
Similar to the discrete WT, the PCWT with one discrete scaling
factor can be written as follows:

X[ω|ak, bk] =
1√
|ak|

W−1∑
n=0

x[n]Ψ∗
[
nTs − bk

ak

]
, (2)

where Ts is the sampling time, and W is the number of data
samples in the buffer. Once a set of scaling factors with length
K is selected, the wavelet bank Ψ and its extracted features
(scalograms) at time n can be expressed as follows:

ΨK×W=
[
Ψ[nTs−b1

a1
], . . . ,Ψ[nTs−bk

ak
], . . . ,Ψ[nTs−bK

aK
]
]T

,

(3)

Xω[n]=
[
Xω1(a1, b1), . . . , Xωk(ak, bk), . . . , XωK(aK , bK)

]T
,

(4)

where, T is the conventional transpose. Since a window (buffer)
of data samples is required during the feature extraction process,

a latency effect exists; therefore, the selection of a proper win-
dow size should balance the latency and the sufficient length of
the waveform.

B. Convolutional Neural Networks (CNNs)

In the event detection stage, the obtained scalograms are con-
verted into 2-D images, and the classification of scalograms turns
into a supervised image classification process. The conventional
approach for image classification requires developing the feature
extractor manually. This approach relies highly on the perfor-
mance of the developed feature extractor. In contrast, Convolu-
tional Neural Networks (CNNs) offer the capability of learning
the features/representations automatically and have been proven
very effective in processing image-related tasks [44]–[46]. Since
PCQ-WT is fundamentally a linear transformation, the data
entries in a scalogram are temporally-correlated. With the two-
dimensional output of the PCQ-WT, CNN is a natural choice to
process such kind of data [47]. It can exploit the correlation in the
neighborhood in two-dimensional data (in its early layers) and
abstract class information underlying the data distribution in the
deeper layers [48], even if the class boundaries are complex and
nonlinear in very high dimensional space, like the scalograms.
In general, the execution of convolutional layers is achieved
through the following set of cross-correlation assessments:

sp(m,n) =
∑
u

∑
v

∑
w

Iu(m+ v, n+ w)Kp(v, w), (5)

where sp(m,n) stands for the convolutional layer’s output at
position (m,n) and p-th channel; the u-th convolutional kernel
is marked as Ku; and Iu denotes the image/data volume in the
u-th channel. A complex convolutional layer is comprised of a
set of simple layers [49], as expressed in the following:

I l = pool (σ(s)) , (6)

here I l stands for the l-th layer’s output volume; σ(·) stands
for the nonlinear operation of the active function; and pool(·)
is a pooling (down-sample) operation in the pooling layer. The
abstraction ability of the network generally increases with the
number of stacked convolutional layers [48].

IV. PROPOSED ANALYTICS WITHIN SMART SENSORS

A. The Proposed PCQ-WT for Online Feature Extraction

To identify an event in each phase, the corresponding fea-
tures need to be observed over time. As the positive-sequence
frequency and phase angles are of interest in xph(t) for syn-
chrophasor measurements, a quadrature PCWT is proposed to
extract the waveform features and signal signatures. To achieve
a computationally-attractive solution with high-fidelity feature
extraction performance, a complex Gabor wavelet is adopted in
this paper, which is expressed as follows

Ψ(t) = exp (jωc(t− b))︸ ︷︷ ︸
Periodic
Component

· exp
(
− (t− b)2

α2
0

)
︸ ︷︷ ︸

Gaussian
Envelope

, (7)
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where, wc is the central frequency. The Fourier transform of this
Gabor wavelet is

FΨ(ω) = α0

√
π · exp(−jωb) · exp

(
−α2

0

4
(ω − ωc)

2

)
. (8)

One can see that the central frequency determines the pseudo
frequency coverage in the waveform feature extraction process.
According to (8), this Gabor wavelet possesses a predictable
narrow bandwidth through properly selecting α0, while the time
shift b will not affect the magnitude of (8), i.e., the intensity of
the extracted feature. Hence, to simplify the derivation, let b = 0;
then the CWT using the Gabor wavelet for a unit-length phasor
with frequency ω0 > 0 turns into

X+(ω0|a, b = 0) =

∫ ∞

−∞
x(t)Ψ*(

t

a
)dt

=

∫ ∞

−∞
exp

(
j
(
ωo −

ωc

a

)
t− t2

a2α2
0

)
dt.

(9)

According to the Hubbard–Stratonovich transformation [50],

exp
(
−α

2
x2

)
=

√
1

2πα

∫ ∞

−∞
exp

(
− y2

2α
− jxy

)
dy, (10)

the Gabor wavelet transform in (9) turns into

X+(ω0|a, b = 0) = aα0

√
πexp

(
−α2

0

4
(aω0 − ωc)

2

)
. (11)

It can be seen that when ω0 = ωc/a, X+(ω0|a, b = 0) reaches
its maximum value; it indicates that the dominant feature of the
selected frequency is extracted. Let

α0 = ωc/(γa), (12)

where, γ is a constant. Accordingly, and based on (7), the
length of the Gaussian window in the Gabor wavelet also adapts
different frequencies. While applied to the sinusoidal waveform,
the feature corresponding to a phasor with negative frequency
(−ω0) is always suppressed, because the Gabor WT of the
negative frequency in (13) decreases as ω0 increases.

X−(-ω0|a, b = 0) = aα0

√
πexp

(
−α2

0

4
(aω0 + ωc)

2

)
. (13)

The proposed Gabor WT that is used in a smart sensor can be
expressed as

Ψ[n|ak, bk] = exp

(
j
ωcTs(n− bk)

ak

)
exp

(
−T 2

s (n− bk)
2

a2kα
2
0

)
.

(14)

Applying different discrete scaling factors ak and time shift bk,
the proposed PCQ-WT used in a smart sensor is obtained as,

X(ωk|ak, bk = 0) =
W−1∑
n=0

x[n]Ψ*

[
−Tsn

ak

]

=

W−1∑
n=0

x[n]exp

(
−j

ωc

ak
Tsn− T 2

s n
2

a2kα
2
0

)
.

(15)

Then Xω consisted of a set of PCQ-WTs is achieved, i.e.,
scalograms are generated which reveal the waveform signatures
in frequencies of interest.

B. The Proposed CNN for Event Detection & Classification

As discussed earlier, the event detection problem can be recast
to a supervised classification process based on the scalograms.
However, classification of the high-dimensional 2-D scalograms
is challenging due to the high dimensionality. Specifically, every
frame of the obtained scalogram has hundreds by hundreds
(scales× time) pixels. Therefore, the PCQ-WT scalograms
are converted to 2-D images, and a compact CNN to classify
scalograms which convey valuable information about the events
in power systems is proposed. Since the classification of the
generated scalogram does not have a very high abstraction
level, the proposed CNN has a simple architecture that provides
accurate event detection results yet achieving a fast processing
speed. This framework can be either a standalone tool for event
detection and classification or can be functionally embedded
within PMUs assisting the phasor processor in selecting proper
SEA outputs in real-time.

C. The Proposed Adaptive Phasor Estimation

The event detection and classification module introduced in
Section IV-B provides real-time information on the grid operat-
ing conditions. The one-size-fits-all algorithm within the exist-
ing PMUs may neither be sufficient nor accurate in effectively
dealing with all types of signals corresponding to different events
and operating conditions in power grids. Multiple solutions can
be thought in response to this challenge: (i) one very costly
solution would be to install several different sensors (each with
one different SEA) in each substation for different end-use appli-
cations that use the measurements; (ii) the other approach can be
to design one very accurate SEA that can work very effectively
under all system operating conditions meeting all measurement
accuracy and speed requirements, which is extremely hard to
achieve considering the hardware limitations as well as the
ever-existing trade-off between the speed-accuracy performance
requirements for different applications; (iii) one promising and
viable approach in line with today’s and tomorrow’s infras-
tructure and computing technologies—which this paper focuses
on—is to host a suite of SEAs that work in parallel within
the sensor and are selectively and adaptively activated in an
automated manner depending on the unfolded system operating
condition.

The detailed architecture of the proposed SEA selection mod-
ule is shown in Fig. 2. For every detected event and identified op-
erating condition, the best-fit measurements—phasor, frequency
and ROCOF—are selected in real-time; therefore, the output
selector should be equipped with an optimized strategy that
dynamically switches between one or multiple SEAs. Among
SEAs within the smart sensor, two novel SEAs are proposed,
one P-Class with promising estimation speed and one M-Class
with high-accuracy measurements.
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Fig. 2. Architecture diagram of the developed SEA selection module.

Fig. 3. The proposed P-Class and M-Class SEAs within a smart sensor.

D. The Proposed P-Class and M-Class SEAs

The overall architecture for the proposed P-Class and M-
Class SEAs within a smart sensor is presented in Fig. 3. The
sampled waveform is sent into the Quadrature Delay Signal
Cancellation (QDSC) module to estimate the P-Class phasor
magnitude (Ap). A functionally-programmed digital quadrature
oscillator is used to assess the P-Class phase angle (Φp) and
frequency (Fp) through eliminating the phase difference (ΔΦ)
between the fundamental waveform and the quadrature oscil-
lator. At last, the ROCOFp is estimated through the derivative
of the measured frequency Fp. The M-Class phasor magnitude
(Am), phase angle (Φm), frequency (Fm), and ROCOFm are
estimated from the Gaussian-Weighted Least Square Taylor
Series SEA. Here, the proposed M-Class SEA is abbreviated as
“GWT-M”. Meanwhile, the GWT-M provides the deviation of
the waveform nominal period (ΔT ) to the QDSC module. This,
in turn, makes the proposed P-Class measurement adaptive to
designated operating conditions. In our proposed framework,
the timing synchronization is employed to drive the digital
oscillator and to ensure an accurate measurement. The nominal
fundamental frequency (FN ) and the period (TN ) is determined
by the system frequency, i.e., 50 Hz or 60 Hz.

1) The Proposed P-Class SEA, Dynamic QDSC Filter Al-
gorithm: The structure of the proposed QDSC algorithm is
presented in Fig. 4. The discretely-sampled waveform xin is
first cached in the buffer; a data selector selects the cached data
by the index obtained through calculating the closest integer
value of Fs(TN +ΔT )/n, wherein Fs is the sampling rate and
k is the delay factor. The selected data is then outputted from the
buffer and multiplied by a unit static vector (ej2π/k). Finally, the
multiplication result and the original sampled input waveform

Fig. 4. Functional diagram of the proposed QDSCk algorithm.

Fig. 5. Frequency response of the cascaded QDSCk with k =
[4, 4, 4, 8, 16, 32, 64].

at the current timestamp are summed and the output (xout) of
the QDSC module is reported.

The transfer function of a QDSC filter is defined by

H(f) =
1

2

[
1 + exp

(
j
2π

k
(1− (TN +ΔT )f)

)]
. (16)

The value of k directly affects not only the buffer length and,
consequently, the speed of the algorithm’s dynamic response,
but also the phasor measurement accuracy. Here, QDSCk with
k = [4, 4, 4, 8, 16, 32, 64] is selected and all QDSC modules are
connected in cascade. As presented in the frequency response
in Fig. 5, all odd harmonics except the positive fundamental
frequency (h = 1) are eliminated, the gain for h = 1 is one,
and no phase shift exists. Hence, this configuration extracts the
positive-sequence fundamental phasor.

2) The Proposed M-Class SEA, Dynamic Gaussian-Weighted
Least Square Taylor Series (GWT-M): Inaccurate estimation of
ΔT in QDSC potentially hinders a stable frequency response and
desired performance in (16). Therefore, a simplified Gaussian-
weighted least square Taylor Series SEA introduce is introduced.
Here the cached fundamental waveform is expressed as follows:

xph,1[n] � xph,1(nTs)

=
1

2
�Aph,1[n]e

j2πFNnTs +
1

2
�A∗
ph,1[n]e

−j2πFNnTs ,

(17)

where “∗” denotes the conjugate operation, �Aph,1[n] is the static
vector of the fundamental positive sequence at time slot n
in the buffer, and n = 0 indicates the current time slot. With
n = 0, 1, 2, . . . , Nd-1, Nd, a queue of sampled xph with length
Nd+1 is obtained in the buffer at the current time slot. Moreover,
Nd must be an even number that guarantees an odd number
of time slots in the buffer to estimate the phasors through the
Taylor series. Meanwhile, the peak of the Gaussian window is
located in the middle of the cached waveform. Therefore, the
phasor estimation physically has a constant delay with Nd/2
time slots. To compensate the phase shift caused by this delay,
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the evaluation in (17) turns to be

xph,1[n] = P [n] + P ∗[n]

P [n] = ej2πFN
Nd
2 Ts · 1

2
�Aph,1[n]e

j2πFNnTs (18)

The second-order Taylor polynomial of �Aph,1[n] is

�Aph,1[n] = �A
(0)
ph,1 +

�A
(1)
ph,1 ·

(
n− Nd

2

)
Ts + �A

(2)
ph,1

·
(n− Nd

2 )2T 2
s

2
(19)

where, �A
(0)
ph,1, �A

(1)
ph,1, and �A

(2)
ph,1 are the zeroth, the first, and

the second derivative of the static vectors of the fundamental
positive sequence, which are evaluated at point Nd

2 , respectively.
The derivative of (19) gives out

�A′
ph,1[n] =

�A
(1)
ph,1 +

�A
(2)
ph,1(n− Nd

2
)Ts. (20)

Applying the Gaussian window, the three phasors and their
conjugates are evaluated via the weighted least square as

�A = (BHGB)−1BH(G · C), (21)

�A = [ �A
(2)
ph,1,

�A
(1)
ph,1,

�A
(0)
ph,1,

�A
∗(0)
ph,1,

�A
∗(1)
ph,1,

�A
∗(2)
ph,1]

T , (22)

C = [xph[0], xph[1], xph[2], . . . , xph[Nd]]
T , (23)

where B is a constant matrix of size (Nd + 1)× 6 [51], and C is
the cached original waveform samples in the proposed M-Class
SEA buffer. G is the Gaussian weight of length Nd + 1. H is
the Hermitian transpose.

With �A achieved in (22), the output of the suggested GWT-M
algorithm can be assessed via (24)–(25):

Am = | �A(0)
ph,1|, Φm = ∠ �A

(0)
ph,1, Fm = FN −Δfm,

(24)

ROCOFm = (−Δfm[n] + Δfm[n− 1])/Ts, (25)

Δfm = Imag{ �A(1)
ph,1 · e

−j∠ �A
(0)
ph,1}/2πAmTs. (26)

At this stage, ΔT can be evaluated in (27) and can be directly
sent to the QDSC module.

ΔT =
Δfm

F 2
N −ΔfmFN

(27)

As ROCOF from the proposed P-Class and M-Class SEAs
is achieved through assessing the frequency derivatives, a low-
pass filter (LPF) is needed to smoothen both the ROCOFm and
ROCOFp estimation during disturbances.

V. CASE STUDIES AND NUMERICAL EVALUATIONS

A. Waveform Specifications, Configurations, and Assumptions

All the proposed modules share a sampling rate of 9.6 kHz.
Mathematically, the wavelet transform should be able to cover
the frequency range from 1 Hz to 3 kHz; the computing com-
plexity of extracting such a frequency range could be reduced
while sufficient feature extraction performance is ensured. In the

proposed PCQ-WT design, the scaling factor ak is selected from
1 to 256 and in a dyadic dilation manner, i.e., ak = 2i, wherein
the exponent i is equally sampled within [0, 8], i.e., pseudo-
continuous. Considering the feature exaction performance (ac-
curacy and speed), the wavelet length of 20 ms (192 time bins)
is chosen. A fixed time shift factor bk = 96 is used for simplicity.
The buffered waveform length of 60 ms (576 time bins) is
selected in (2). There is no padding during WT calculations
and no congestion is assumed during data transfer or A2D
conversion. Hence, the duration of each obtained scalogram is
40 ms, i.e., buffered waveform length (60 ms) subtracted with
the wavelet length (20 ms).

The specifications of the test power waveforms are selected
according to [13], [20] as detailed in Table I. The standard
mathematical representations of the test input waveforms are
defined as follows:

x(t) = Xm[1 + kAu(t)]× cos (ω1t+ φ0) (28a)

x(t) = Xm × cos [ω1t+ kPu(t) + φ0] (28b)

x(t) = Xm[1 + kA cos (ωmt)]× cos (ω1t+ φ0) (28c)

x(t) = Xm cos [ω1t+ kP cos (ωmt− π) + φ0] (28d)

x(t) = Xm cos [ω1t+ πRf t
2 + φ0] (28e)

(28a)–(28e) respectively, represent the magnitude jump,
phase jump, amplitude modulation, phase modulation, and fre-
quency ramp events; Xm and φ0 are the amplitude and phase
angle of the input signal; ω1 is the nominal fundamental fre-
quency of the system in rad/s; u(t) is a unit step function. kA
and kP are, respectively, the magnitude and phase factor in the
modulation or step change events. Rf = df/dt is the frequency
ramp rate in Hz/s (a constant value in this test).

In total, eight types of waveforms are simulated corresponding
to different grid operating conditions: (i) normal operating, (ii)
magnitude step change, (iii) phase step change, (iv) harmonic
distortion, (v) out-of-band interference, (vi) amplitude modula-
tion (AM), (vii) phase modulation (PM), and (viii) frequency
ramp. All test waveforms contain a Gaussian background noise
with 40 dB signal to noise ratio (SNR).

B. Stage 1: Waveform Feature Extraction

The performance of the proposed PCQ-WT feature extraction
module (Stage 1) is first examined in characterizing distin-
guishable patterns and signal signatures under a variety of grid
operating conditions. For simplicity, the occurrence time of all
demonstrated events is assumed the same.

1) Waveform Feature Extraction Under Transient Events:
Several transient events are simulated and analyzed as follows:
the magnitude step (Fig. 6(a)), the frequency step (Fig. 6(b)), and
phase step (Fig. 6(c)). One can see that the proposed PCQ-WT
pattern recognition algorithm has successfully recognized the
unique peculiarities in the signals originated from such fast-
transient events. Also, the signal patterns and signatures have
appeared almost immediately as the events occur, making them
absolutely suitable for online monitoring applications.
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TABLE I
SPECIFICATIONS OF THE INPUT TEST WAVEFORM PARAMETERS

*Signal to Noise Ration (SNR) of 40 dB is applied to all test signals.

Fig. 6. Extracted features from simulated fast-dynamic transient events: (a)(d) magnitude step change of 0.2 pu at t = 10 ms; (b)(e) frequency step change of
−2 Hz at t = 10 ms; (c)(f) phase step change of −10◦ at t = 10 ms.

Fig. 7. Extracted features from simulated slow-dynamic steady-state events: (a)(d) out-of-band interference of 100 Hz at t = 0.01 s; (b)(e) amplitude modulation
with magnitude of 0.05 pu and frequency of 5 Hz at t = 0.04 s; (c)(f) phase modulation with magnitude of 0.1 pu and frequency of 5 Hz at t = 0.04 s.

2) Waveform Feature Extraction Under Periodic Events:
The following comparisons focus on the emergence of the
slow-transient events with periodic impacts on power wave-
forms. The simulated events include out-of-band interference
(Fig. 7(a)), amplitude modulations (Fig. 7(b)), and phase modu-
lations (Fig. 7(c)), where the proposed PCQ-WT algorithm suc-
cessfully extract unique features in the waveforms; such patterns
convey important information on the underlying slow-dynamic
events and provide a foundation based on which machine learn-
ing analytics and decision making platforms can operate in
real-time.

C. Stage 2: Event Detection and Classification

1) Model Configuration: The CNN architecture design (e.g.
the kernel size) is a relative empirical process [47]. In this
paper, a common practice is followed, i.e., the kernel and
pooling sizes are odd numbers and usually less or equal than
seven [49]. Grid search is also conducted on searching through
the depth and the learning rate of CNNs, as these two hyper-
parameters impact the training performance the most. The
range of the searched depth is {2, 3} and the learning rates
are {1× 10−2, 1× 10−3, . . . , 1× 10−6}. Here, only two depths

are searched since the convolutional and pooling operation in the
middle layers reduces the size of the output data, and the output
of a 4-layer CNN is already small (8×8); a deeper network will
lose all information of the input. Details of the proposed CNN
architecture (e.g., the number of convolutional kernels) can be
seen in Fig. 8; note that three CNNs sharing exact identical
architecture are used for processing the three-phase scalograms.
However, one-time training is needed only since the three phases
are symmetric and can share one CNN using the same pa-
rameters. The proposed CNN analytics contain three convo-
lutional layers (Conv1, Conv2 and Conv3), two max-pooling
layers (MP1 and PM2) and two fully-connected layers (FC1
and FC2) with the following specifications: Input(256×385)–
Conv1(100, 5×11)–MP1(3×3)–Conv2(100, 5×5)–MP2(3×3)–
Conv3(64, 5×5)–FC1(600×1)–FC2(8×1). Scalograms are fed
into the proposed analytics for a duration of 40 ms (385 data sam-
ples), which is treated as the observation window. Conventional
images have homogeneous units on the horizontal and vertical
axes, while the scalogram axes carry different information on
either time or frequency. A wide kernel (5×11) in Conv1 that
can extract more information from the transitions along the time
axis is applied. The stride of Conv1 is (2,3), and Conv2 and
Conv3 use strides with a size of (1,1). Except for FC1 layer,
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Fig. 8. Architectural diagram of the proposed CNN configuration with indicated parameters.

Fig. 9. The architecture of the compared MLP.

batch normalization is used in each convolutional and fully
connected layers. In Conv3 and FC1, Dropout [52] is used to
prevent over-fitting. Rectified Linear Units (ReLUs) are chosen
as the activation function in the neural network. Cross-entropy
is used as the loss function.

In this paper, 10,000 samples are generated per event for
training the CNNs and another 1,000 samples of each event
for validations. In each data sample, only one event occurs at
a random time instant. If a generated scalogram contains the
post-event phase-out stage, the new emerging event is then used
for labeling this scalogram. During the training process, the
CNNs are trained using the single-phase scalograms. Finally,
another 1,000 samples per event type are generated for blind
testing to verify the detection accuracy.

To explore the performance of the Multi-Layer Perceptron
(MLP) and compare it against the suggested CNNs, the grid-
search experiments on its architectures is also conducted. In the
experiments of MLPs, the inputs are the original waveforms
without any transformation; it is a 385-dimension vector. The
depth of the networks and the learning rate are used in grid
search. The range of the searched depth is {4, 6, 8 . . . , 14} and
the learning rates are {1× 10−3, 1× 10−4, . . . , 1× 10−6}. The
number of the perceptrons in the middle layers is fixed as 1,500
(see Fig. 9).

2) Offline Event Detection Accuracy: The event detection
test results on a variety of events simulated offline are sum-
marized in two confusion matrices presented in Fig. 10. The
overall detection accuracy of the proposed mechanism using
the single-phase scalograms is found 91.97% (see Fig. 10(a)).
The best performance of MLPs is achieved by a 10-layer network
and using a learning rate of 1×10−5 where the corresponding test

accuracy is found to be 83.61%; Fig. 10(b) shows the confusion
matrix of the test results. More importantly, MLP achieved a
relatively lower classification accuracy; even worse, the num-
ber of parameters in this 10-layer MLP is about 16 million,
while the suggested CNN has only 2.5 million parameters. The
“true” label stands for the actual (simulated) test events, and
the “predicted” label corresponds to the classification outcome
of the proposed CNN modules. When inspecting the confusion
matrix (Fig. 10(a)), one can find that the Amplitude Modulation
vs Normal pair and Phase Modulation vs Frequency Ramp
pair dominate the mis-classified examples (outliers). These two
classes of events can overlap in real-world scenarios. For in-
stance, if the modulation magnitude during the Amplitude Mod-
ulation event approaches zero, the distribution of the examples in
this class approaches Normal. The similarity of the distribution
between the Phase Modulation and Frequency Ramp events is
mathematically proved in Appendix III (see [41]). Furthermore,
one ultimate goal of classification in the proposed framework is
to facilitate the right selection of the SEAs. These miss-classified
events share similar behavior, which would not considerably
impact the measurement accuracy.

3) Online Event Classification Application: The previous
analysis verified the promising accuracy of the proposed event
detection scheme. Here, online experiments on the integrated
feature extraction and event detection mechanisms are con-
ducted in a workstation which has an Intel Core i7-9700 K
CPU and Nvidia GeForce GTX 2080Ti GPU. Note that the
feature extraction module takes approximately 1.20 ± 0.23 ms
to operate and the event classification engine through CNN takes
approximately 1.04 ± 0.31 ms to generate the outcome. As the
total operation time of the proposed event detection mechanism
is 2.24 ± 0.39 ms, the proposed mechanism suites well the
real-time event detection applications.

To demonstrate the online classification performance of the
proposed analytics, a synthetic waveform with a Phase Step
event occurring at t = 0 s is fed into the feature extraction and
event detection module. In order to avoid possible congestions,
the event detection is executed in a rolling manner, where the
length of the rolling past observation (execution interval) is set
to be every 4 ms, which is larger than the combined processing
time. The result is shown in Fig. 11. One can see that it took
approximately 20 ms for the proposed scheme to correctly detect
the event using Phase A waveform. It can be also noticed in
Fig. 11 that an event classification delay and a residual effect
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Fig. 10. Test results of the proposed CNN engine and MLP; detection accuracy is presented in the confusion matrix.

Fig. 11. Online event classification test results: phase step event occurs at
t = 0 ms (Event indexes are shown in Fig. 10(c)).

after the event ends do exist. The reason lies in the fact that the
event is hard to be classified before the corresponding patterns
and signal signatures fully move into the observation window.
Similarly, when the patterns start phasing out of the observation
window but before they fully vanish, the classification outcome
is found unstable. However, it is still preferable to accurately
detect and classify the new emerging event before the corre-
sponding features fully appear in the observation window, and
such inaccuracies in the output only last for 20 ms, i.e., 1.2
fundamental cycles; this delay is still within the desirable limits
and acceptable. Meanwhile, it can be seen in all figures in
Section V-B that the center of signal signatures resulted from
the fast-dynamic transient events can be observed after 10 ms of
the occurrence. With a conservative estimation, the fingerprint
of the event can be generally revealed and classified after one
fundamental cycle (16.67 ms) plus 2.24±0.39 ms, which is
approximately 20 ms. Therefore, the proposed event classifi-
cation scheme can meet the standard granularity limits [13]
and achieves the desired performance requirements for real-time
applications.

D. Stage 3: Adaptive SEA Selection

In order to achieve high-fidelity synchrophasor measurements
at all times, one need to know which SEA best suits a cer-
tain type of event or grid operating condition. The proposed
framework for adaptive SEA selection houses multiple installed
SEAs, the outputs of which could be adaptively selected as

needed; therefore, multiple SEAs are analyzed to demonstrate
their different performances. A dynamic Quadrature Delayed
Signal Cancellation SEA for high-speed P-Class applications
(QDSC-P) and a Gaussian Weighted Taylor Series least square
SEA for high-accuracy M-Class applications (GWT-M) are pro-
posed in Section IV-D. An “enIpDFT” SEA [19] and a P- and
M-Class SEA from [53] which are named as “P & M” are also
included. Here, the enIpDFT is categorized as a P-Class SEA due
to its high response speed verified and reported in [19]. When
implementing the P & M SEA, P & M-P and P & M-M are used
to represent the functionalities corresponding to P-Class and
M-Class applications, respectively. The two SEAs are primarily
used for performance comparison with our proposed QDSC-P
and GWT-M SEAs. All SEAs sharing the same sampling rate of
9.6 kHz.

1) Model Configurations and Parameter Settings: The
GWT-M SEA possesses a Gaussian window with a length of 4.8
fundamental cycles and the shape factor α = 3.6; the enIpDFT
SEA is characterized via a Hann window with a length of 3
fundamental cycle—the same as that utilized in [19]. The P
& M-P and P & M-M SEAs use a Kaiser window of length
3.8 and 5.8 fundamental cycles, respectively [53]. Additionally,
filtering the noise and the distortion in ROCOF measurement by
higher-order low-pass filters (LPFs) can significantly reduce the
ROCOF error (RFE). This, in turn, results in a slower ROCOF
measurement. In order to ensure a fair performance comparison
of different SEAs when assessing ROCOF, an LPF with the
following transfer function is applied when needed:

h(z) =
0.0968z + 0.0968

z − 0.8063
, (29)

This applied setting ensures an acceptable dynamic response
speed within the maximum RFE limits as enforced in [13].

2) Steady-State Compliance Tests: Due to space limitations
and in accordance with the IEEE standard [13], the results on
only one steady-state compliance test—frequency sweeping—is
plotted in Fig. 12, while additional test results can be found in
Appendix II.A [41]. When the test signal frequency changes
from 55 Hz to 65 Hz, the maximum Total Vector Errors (TVEs)
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Fig. 12. Performance evaluation of different SEAs under Frequency Sweeping tests.

Fig. 13. Performance evaluation of different SEAs under Magnitude Step test of 0.1 pu.

for all SEAs within the proposed framework are assessed and
plotted in Fig. 12(a). One can see that the outputs from all SEAs
result in TVE measures less than 1%, except the enIpDFT (solid
green line) whose TVE exceeds the 1% threshold when the
frequency is less than 57.5 Hz.

For the P-Class SEAs, the Frequency Error (FE) limit is set to
10mHz according to [13]. The proposed QDSC-P (dashed blue
line) in Fig. 12(b) is observed to reach its maximum FE (±5mHz)
at f = 55 Hz. For enIpDFT SEA, the FE stays within the limit
only when f is around the nominal frequency and it quickly
exceeds the 5mHz limit when f ≤59.7 Hz and f ≥60.9 Hz;
therefore, the FE results in Fig. 12(b) reveal that the P-Class
enIpDFT SEA fails the conducted tests in the required frequency
range from 58 Hz to 62 Hz. When focused on FE, the results
demonstrate that the proposed QDSC-P outperforms the other
two SEAs. The P & M-P SEA (dashed brown line) stays within
the limits when the off-nominal frequency is beyond ±4.15 Hz,
which satisfies the standard requirement. In the M-Class FE plot
of Fig. 12(b), our proposed GWT-M SEA (solid blue line) stays
within the M-Class FE limit (5mHz) when f is in the designated
range, but P & M-M fails when f >63.6 Hz or f <56.3 Hz.

Fig. 12(c) illustrates the RFE performance comparison of
the integrated SEAs within the smart sensor. One can see from
the numerical test results that only the proposed QDSC-P SEA
satisfies the P-Class standard requirement (RFE ≤0.01 Hz/s)
at the frequency range from 58 Hz to 62 Hz. The RFE corre-
sponding to the P& M-P SEA exceeds the desired limit when
f>61.5 Hz or f<58.5 Hz. In addition, the reported RFE for
the enIpDFT SEA fails the compliance thresholds in the entire
frequency range tested. For the other two M-Class SEAs, both
the proposed GWT-M and P & M-M fail to meet the standard

requirements, as the corresponding RFEs quickly exceed the
limit when the off-nominal frequency is 0.7 Hz and 1.0 Hz,
respectively. However, the proposed GWT-M SEA performs
better than the P & M-M SEA, as the former can tolerate a
wider off-nominal frequency range.

3) Dynamic Compliance Tests: The dynamic response of
different SEAs is tested to verify their compliance with the
standard requirements. Magnitude Step Tests are here focused
as presented in Fig. 13(a), while additional dynamic test results
are provided in Appendix II.B [41]. In Fig. 13(a), one can see
that the TVE indicator corresponding to the QDSC-P SEA offers
the fastest convergence speed (13 ms) when the magnitude step
of 0.1pu occurs. The P & M-P SEA takes 40 ms to return below
the limit (which is more than two times of that for the QDSC-P
SEA) and fails to meet the standard requirement of 1.7/f0 =
28.3 ms. Both M-Class SEAs achieve the standard compliance
requirement of the TVE response time limit (79 ms). Fig. 13(b)
illustrates the FE comparisons of different SEAs. The enIpDFT
SEA is found the fastest (taking only 46 ms) to return below
the desired FE limit, while this time is 60 ms and 82 ms for
the P & M-P and QDSC-P SEAs, respectively. Unfortunately,
both QDSC-P and P & M-P SEAs take longer than the desired
3.5/f0 = 58.3 ms response time limit. The GWT-M SEA takes
70 ms and the P & M-M SEA takes 85 ms to converge, which
are within the 120 ms prescribed response time limit in [13].
With a focus on the RFE indicator, the enIpDFT SEA fails
to meet the standard requirement and, hence, is not included
in the results presented in Fig. 13(c). The QDSC-P SEA fails
the magnitude step test as it violates the P-Class RFE response
time limit (4/f0 = 66.6 ms). Since removing the LPF would not
improve the ROCOF response speed of the QDSC-P SEA, it is
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TABLE II
BEST-FIT SEAS FOR PHASOR MEASUREMENT UNDER DIFFERENT TEST

SCENARIOS AND OPERATING CONDITIONS

†PMU Class.

concluded not suitable for ROCOF measurements, particularly,
during dynamic test conditions. The P & M-P SEA takes 63 ms
to return back to the RFE limit which satisfies the standard
response time requirement. Compared to the GWT-M SEA, the
P & M-M SEA shows the slowest RFE convergence speed, but
is still within the 129 ms M-Class response time limit under
dynamic test conditions. Hence, the proposed GWT-M SEA is
concluded as the most promising candidate for M-Class ROCOF
measurements.

4) SEA Selection Strategies: The analyzed SEA test results
verified that different SEAs perform differently under various
test scenarios and simulated operating conditions. The proposed
approach to synchrophasor measurement is, hence, adaptive in
that only the best-fit SEAs are activated at any time instant,
thereby ensuring high-fidelity measurements. The results are
demonstrated in Table II, offering a holistic view on the per-
formance and advantage of each SEA with regards to different
performance metrics of interest. The results presented in this
table can be used for adaptively selecting an SEA according
to the detected event. Meanwhile, one can see in Table II that
the proposed QDSC-P and GWT-M SEAs are the best choice
in 2/3 (i.e., 34 out of 51) of scenarios, which confirms their
effectiveness in improving the synchrophasor measurements.
Moreover, the tests conducted in Section V-C verified that
the proposed adaptive SEA selection mechanism can ensure
the desired accuracy and speed requirements of different end-use
applications that utilize the synchrophasor measurements. Note
that the proposed adaptive mechanism is generic enough to
accommodate other SEAs that are not investigated here but of
interest to the user.

E. Integrated Online Test

An integration of the suggested SEA selection mechanism in
conjunction with the event detection and classification modules
is demonstrated in Fig. 14. With the occurrence of a Harmonic
Distortion event in the waveforms and following a transition
period (as marked in red), the SEA selection mechanism selects

Fig. 14. An example integration of the online event classification jointly with
the SEA selection functions during a harmonic distortion event.

the best-fit SEA and achieves the high-fidelity measurements
under the detected event. When the Harmonic Distortion event
disappears, and the corresponding waveforms return back to
normal, it takes another transition period to switch the SEA back
to most suitable one for synchrophasor measurements under
normal operating condition. One may notice that phase-out
misclassifications do exist in Fig. 14, and they could be observed
during the “transition period”. This is because the event is hard
to be classified before the corresponding patterns and signal
signatures fully move into the observation window. Similarly,
when the patterns start phasing out of the observation window
but before they fully vanish, the new emerging event could be
misclassified.

In order to demonstrate the feasibility of implementing the
suggested approach and verify the performance and robustness
of the proposed event detection and SEA selection mechanisms
during both steady-state and dynamic events, three experiments
are conducted:

1) A synthetic waveform containing multiple events at differ-
ent designated time instants is generated and fed into the
smart sensor. The detected event with confidence rates and
the selected P-class TVE output are recorded. Meanwhile,
the TVEs for all the embedded P-class SEAs are recorded
for comparison.

2) A grid-connected three-phase inverter in Typhoon-
HIL402 is used as the simulation platform. The voltage
waveform from Phase A is captured, down sampled, and
then fed into the smart sensor. This waveform contains a
capacitor filter loss event. The detected event with confi-
dence rates and the selected P-class FE output is recorded.
Also, it is known that the frequency is fixed at 60 Hz.
The FE indicators for all P-class SEAs are recorded for
comparison.

3) A synthetic waveform (used for testing the CNN in Fig. 11)
containing 5◦ phase step at t = 0 sec is re-generated
and fed into the smart sensor. The detected event with
confidence rates and the selected P-class TVE output as
well as all three P-class TVEs are reported.

In the designed integrated Test 1 and Test 2, and for simplicity
in assembling each module into one integrated system, the CNN
is complied into CPU and the computing process of both WT
and CNN are assigned in one single core of the Intel I7-9700 k.
The average time for WT and CNN computations in CPU is
7.72±0.22 ms; therefore, the rolling past observation (execution
interval) is conservatively set to be every 13 ms when using

Authorized licensed use limited to: The George Washington University. Downloaded on August 05,2022 at 03:52:51 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: DISTRIBUTED INTELLIGENCE FOR ONLINE SITUATIONAL AWARENESS IN POWER GRIDS 2511

Fig. 15. Online event detection and measurement fidelity test results: Test Case 1.

CPU. Note that using a GPU significantly reduces the processor
time (2.24±0.39 ms, 70% faster than CPU) and the execution
time (4 ms); thus, it would be necessary to use GPU for the entire
process to be computationally-efficient in real-time applications.
To demonstrate the proposed event detection method in a higher
time resolution, the feature extraction and event detection pro-
cess is performed in GPU in Test 3 with execution interval 4 ms,
but the SEA selection functionality is still performed in CPU.
Additionally, to demonstrate the robustness of our approach in
providing accurate (correct) detection results under malicious
cyber-attack scenarios, it is here assumed that the incoming GPS
timing and communication signals are lost or jammed by a cyber
intruder in both test cases. Therefore, only the inner timing clock
is available in the smart sensor. Meanwhile, the local operator
can rely solely on the smart sensor solution and read its output
to monitor the operating condition where the sensor is installed.

1) Test Case 1: The synthetic waveform can be seen on
the upper side of Fig. 15(a), below which is the heat-map
representing the event detection results over time, where the
classification confidence is marked with colors along the time

axis. The event featured with the highest confidence is finally
reported throughout the simulated waveform. In this example, all
events are correctly detected. Similar to the measurement delays
in SEAs, the detection delay is inevitable due to the waveform
buffer. The worst detection delay is found to be approximately
50 ms. The post-event phase-out miss-classifications do also
exist and can be observed during the transitions from Normal
to Phase Step conditions and Phase Step returning back to
Normal operating state. Similar observations can be also found
on the Magnitude Step event. The miss-predicting labels would
result in a sub-optimal selection of the SEAs and increase the
measurement errors in some of the outputs compared to those
obtained when the events are correctly detected.

Fig. 15(b) and Fig. 15(c) demonstrate the output TVEs when
the adaptive SEA selection is applied and individually for all
embedded P-class SEAs, respectively. One can see that the
proposed adaptive SEA selection mechanism has chosen the
lowest-TVE SEA (i.e., P&M-P) during the Phase Step event
observation. Regarding the Magnitude Step event, the TVE out-
put corresponds to the P&M-P and the proposed CDSC-P, which
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Fig. 16. Power electronic model configuration and the simulation platform.

is the lowest among all TVEs reported in Fig. 15(c). Similarly
for the Phase Modulation and Amplitude Modulation events, the
TVE from the selected P&M-P is the smallest; however, spikes
can be observed even through there is no sudden change in the
waveform. Therefore, a well-selected set of SEAs is necessary
for the operation of the smart sensor in the future. This test
example demonstrated the effectiveness of the proposed analyt-
ics within a smart sensor technology. The operator can quickly
identify the low frequency oscillation events at the measurement
point via the smart sensor solution, even without any estab-
lished communications between the substations and the control
center.

Regarding the event detection errors, one can find that in
most cases, the miss-predicted events would share the same
SEA output as the actual event (see Table II). For example,
the TVEs reported for the Phase Step and Phase Modulation
events share the same SEA; in such cases, the miss-prediction
would not affect the measurement accuracy (see Fig. 15(b) and
Fig. 15(c)). Also, the miss-predicted events usually occur in
dynamic transient states, where the features corresponding to the
incoming event are not yet fully observed; hence, a small number
of miss-predicting labels would not harm the post event analysis.
Finally, the CNN classifier not only outputs the predicted classes
of the prevailing events, but also provides the confidence of
the event classification outcome (see Fig. 15(a)); while the
predictions may miss the ground truth at the beginning or the end
of the event duration, the confidence rate offers more information
on the fidelity of the decisions.

2) Test Case 2: A grid-connected three-phase inverter shown
in Fig. 16(a) is simulated in Typhoon-HIL402, in which a filter
capacitor loss event is to be tested. Fig. 16(b) illustrates the
captured waveform in this test. For simplicity, the waveform is
cropped and the filter capacitor loss event is assumed to occur
at t = 100 ms. The cropped waveform is fed into the proposed
smart sensor framework. From Fig. 17(a), one can notice that
the FE corresponding to the P&M-P SEA is selected as the
output during the normal condition. Once the filter capacitor
loss occurs at Phase A, the confidence rate for the Normal
operating condition dropped, and a Harmonic distortion event
was reported around 30 ms later. Even out-of-band inference can

Fig. 17. Online event detection and measurement fidelity test results: Test
Case 2.
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Fig. 18. Online event detection and measurement fidelity test results: Test
Case 3.

be observed in the spectrum, and the harmonics still dominated.
Therefore, the performance of the proposed event detection
module is confirmed to be desirable in this test. Moreover, before
the correct event is reported, the distortions in the FE plot are
observed to be trending higher but still remaining within the de-
sirable limits. The smallest FE output was then selected after the
harmonic event was identified. The FE limit violation is reduced
compared to that observed from other SEAs in Fig. 17(c).

In this test, a practical application for detecting the abnor-
mal harmonics in the case of communication failures and loss
of GPS timing signal was demonstrated. Conventional PMUs
rely on communication channels and common GPS timing to
provide valid phasor measurements for control center analytics,
yet vulnerable to delays and failures. With the assistance of

the proposed smart sensor solution, harmonic distortion was
detected and reported locally; meanwhile, the best-fit SEA
that minimizes the measurement errors during different op-
erating conditions and in presence of a variety of events is
dynamically selected. Thus, the operator can then be aware
that Phase A of the inverter could be operating in a degraded
condition, even though the frequency and phasor magnitudes
are still within the nominal range (varying between 60.005 Hz
to 59.995 Hz). The operator can start to pinpoint the potential
causes of the harmonics, then to quickly identify and replace
the lost filter capacitor to ensure the quality of the distributed
power to the customers. This operation can be also performed
even if an adversarial cyber attacker blocks the communication
channels.

3) Test Case 3: In Test 3, the test waveform used in Fig. 11
is re-generated and presented in Fig. 18(a). The confidence rates
indicated the detailed event detection results that are demon-
strated in Fig. 11. Also, these confidence rates are reported with
a higher time resolution compared to Test 1 and Test 2. Similar to
the phase step event detection results shown in Test 1, the initial
detection outcome during this phase step event moving into the
observation window is Phase Modulation. Then, the true event,
i.e., the Phase Step is reported. Finally, the phase-out stage is
misclassified as Frequency Ramp. However, this similar combi-
nation of these three detected events (Phase Modulation-Phase
Step-Frequency Ramp) can be used as an indicator to determine
the actual occurrence of the Phase Step event from a series of
event detection results. This high-resolution test result highlights
the benefits of a shorter execution interval with the assistance of
GPU. The SEA selection model still provides promising results
as it was also demonstrated in Test 1 and Test 2 (see Fig. 15(b)
and Fig. 17(b), respectively).

VI. CONCLUSION

This paper presented innovative data-driven analytics em-
bedded in a smart sensor solution technology; the proposed
solution transforms the existing centralized monitoring and con-
trol paradigms to distributed intelligence for online situational
awareness in power grids. Furthermore, the proposed framework
is equipped with an adaptive SEA selection mechanism that
ensures high-fidelity synchrophasor measurements continually
under a variety of events. This paper numerically analyzed
and verified the performance of different modules within the
presented technology: online feature extraction, event detection
and classification as well as adaptive measurements. Through
extensive testing and analyses, it was concluded that (i) the
proposed event detection and classification scheme using ma-
chine learning could provide real-time, accurate, and informa-
tive guidelines on the ongoing operating conditions in power
grids, thereby facilitating automatic control actions in response;
(ii) different SEAs perform differently under different events
and operating conditions in the grid; with the knowledge on
the performance of different P-Class and M-Class SEAs under
various grid operating conditions, the best-fit SEA output is
selected in an automated manner for high-fidelity measurements.
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The proposed analytics are based on a data-driven approach,
thus heavily relying on the credibility of the waveform dataset.
Future research may focus on investigating other solutions for
dealing with datasets including multiple simultaneous events as
well as training and testing the proposed solution using real-
world waveforms containing such events. Also, the tests of the
proposed solution working jointly with actuation and/or control
devices and quantification of the misclassification impacts on
power system operation need to be further researched.
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