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Abstract— Costly and time-consuming approaches for solder
joint lifetime estimation in electronic systems along with the
limited availability and incoherency of data challenge the relia-
bility considerations to be among the primary design criteria of
electronic devices. In this article, an iterative machine learning
framework is designed to predict the useful lifetime of the solder
joint using a set of self-healing data that reinforce the machine
learning predictive model with thermal loading specifications,
material properties, and geometry of the solder joint. The self-
healing dataset is iteratively injected through a correlation-driven
neural network (CDNN) to fulfill the data diversity. Outcomes
show a very significant enhancement in lifetime prediction
accuracy of the solder joint within a very short time. The effects
of solder alloy and solder layer geometry are separately evaluated
on the creep-fatigue damage evolution of the solder joint. The
results reveal that Sn–Ag–Cu-based solder alloy generally has
a better performance. Moreover, the creep and fatigue damage
evolutions are found dominant, respectively, in Sn–Pb- and
Sn–Ag–Cu-based solder alloys. The proposed framework offers a
tool allowing for the reliability-driven design of electronic devices
in the early stage of fabrication.

Index Terms— Creep damage, electronic device, fatigue
damage, iterative machine learning, solder joint.

I. INTRODUCTION

IN THE last few years, there has been a growing interest in
strengthening electronic devices under harsh environmental

conditions in a variety of applications, such as satellites in
space, aircraft, and vehicles [1]–[3]. Power semiconductors
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are known among the most vulnerable parts in electronic
circuits [4]. Within the power semiconductors, solder joints’
strength in facing external and internal stresses has remained
a long-lasting challenge for manufacturers [5]–[7]. The sol-
der joints encounter considerable thermomechanical stresses
during their normal working conditions, which, consequently,
shortens the useful lifetime of the devices [8].

Numerous studies have focused on the existing challenges
around reliability evaluation of the solder joints in order to
discover the effects of different contributory factors on the
lifetime of the power devices. For several years, great effort
has been devoted to the study of factors, such as mechanical
properties, current stress, thermal variations, intermetallic for-
mation, phase transition, and defects nucleation to estimate the
useful lifetime of the solder joints in electronic devices. For
instance, Siswanto et al. [9] discussed the effect of the electric
current on the microstructure and degradation performance of
the solder joints, resulting in an optimum layer thickness for
the solder joint. The effects of current waveforms on the useful
lifetime of the solder joint were investigated in [10], revealing
that square wave has comparably the lowest failure resistance.
Although these studies assessed the significance of the current
in the solder joint lifetime, they were not able to include
other important contributory factors. A considerable number
of studies on the constitutive models with the diverse range of
strain rate and the temperature were performed to tackle the
inconsistencies in the conventional models and suggested pre-
dictive frameworks founded based on correlations among the
physical parameters [10], [11]. Thermal-related specifications
have been reflected in numerous studies [12]–[17]. Multifactor
impacts of the junction temperature swing in power modules
were considered in the power cycling tests and, consequently,
useful lifetime estimation of the solder joint employing several
failure indicators, including thermal and electrical resistances
and ON-state voltage of the devices [18]. The effect of
thermal-related specifications on SiC power devices at high
temperature (200 ◦C) was studied in [19], where an ultrafast
and miniaturized system was proposed with an added online
thermal characteristic measurement function to characterize
the effect of high temperature on the reliability of the solder
joint. A layer thickness optimization was carried out under
fixed thermal and mechanical conditions in [20]. This opti-
mization was based on the creep energy accumulation in the
solder joint and its thermal resistance in the power devices.
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Lee et al. [21] proposed a new acceleration factor for the reli-
ability assessment of the solder joint based on different thermal
cyclic loading rates. The theory was reconfigured in [22]
by enfolding the mechanical loading with the thermal-related
specifications to estimate the fatigue lifetime of the electronic
devices. All the above studies were using a unilateral analysis
of a limited number of contributory factors due to physical
limitations. Thereby, a decisive difference between the mod-
els and experimental results has motivated researchers and
developers to envision realistic models capable of capturing
all contributory factors. Statistical methods, such as Weibull
distribution [23], offer promising potential in this regard. The
uncertainties in physical parameters were taken into account
using the Weibull distribution for lifetime modeling of the
solder joint in the power devices [24], [25]. With Weibull-
distributed data and several nonlinear models employed, solder
chemical composition, thermal-related specifications [26], and
solder joint geometry [27] are found as the key parameters
in stimulating the failure mechanism of the solder joint.
Ma et al. [28] declared that the failure rate in the solder
joints depends heavily on the size of the package and the
metallurgical aspect of the solder material. Hazard regression
analysis was proposed by Raj et al. [5] to appropriately
estimate the useful lifetime of the solder joint, where the aging
conditions of the solder joint and its composition were found
as the primary factors in the solder joint degradation. More
previous research [29]–[31] had focused on the reliability
assessment of the power converters based on a range of
fundamental principles in handbooks, such as MIL-HDBK-
217 [32] and IEEE 1413.1 [33]. These studies focused on the
reliability of the system with no consideration to the physical
aspects of the failure. Lack of intuition on either failure
mechanisms or failure root causes soon led to such stochastic
models not being widely utilized in practice. On the other
side, more recently, machine learning methodologies are used
for the reliability assessment of electronic devices [34]–[36].
Machine learning is able to bridge a meaningful correlation
among the substantial contributory factors and strength of the
solder joint under different conditions. However, ample and
adequate datasets are required in the training phase of the
machine learning algorithms in order to establish an acceptable
predictive model for lifetime estimation of the solder joint in
electronic devices. Collecting the training datasets either from
simulations or experiments is critical in developing a precise
predictive model. Although several studies [37]–[40] have
dealt with different types of artificial networks in technical
designs, little attention has been given to the use of machine
learning for lifetime prediction of the solder joints in electronic
devices. Sung and Robert [41] declared that artificial network-
based reliability assessment of the solder joint may engender
a much more accurate outcome provided that the training
datasets are both accurate and adequate alike.

Samavatian et al. [36] draw attention to a new research
direction suggesting to use a correlation-driven neural net-
work (CDNN) proposed for evaluating the useful lifetime of
the solder joint in power devices. Multiple contributory factors
of composition (material and physical properties of the joint
zone), thermal loading specifications and solder joint geom-

etry were judiciously considered in the lifetime estimation.
However, it does not investigate the effects of solder joint
geometry on the fatigue evolution within the devices. Simi-
larly, the most critical factors, such as high and low dwelling
temperatures, dwelling times, and ramping rates, were ignored
in [36]. Enriching data on the above critical conditions calls
for several costly and time-consuming experiments and sim-
ulations particularly in low dwelling temperatures, dwelling
times, and ramping rates. For instance, implementing an
experiment in low-intensity thermal conditions was taking
at least six months [42]. Even though reliability assessment
of the solder joints has been improved using the suggested
CDNN platform in [37], such improvements have been found
to be limited by inadequate training datasets, especially in
low-/high-intensity thermal conditions. Nonetheless, it is pos-
sible to further improve the accuracy of the predictive model
by creating data through a self-training algorithm. With the
goal to fill in the mentioned knowledge gap in the state-
of-the-art literature, this work seeks to fortify the training
datasets for the more promising performance of the CDNN
predictive model, which was previously proposed by Labed
and Labed [37]. We develop and validate the CDNN approach
for reliability assessment of the solder joints and bridge solder
joint geometry with the fatigue damage evolution in electronic
systems in order to optimize the best geometry conditions. The
developed CDNN model results in an accelerated discovery of
the effects of the important contributory factors on the useful
lifetime of the solder joint.

The remainder of this article is structured as follows.
Section II introduces the proposed methodology. Numerical
evaluation of the proposed framework and the results are
discussed in Section III. Finally, conclusions are drawn in
Section IV.

II. METHODOLOGY

Artificial intelligence is a tool to estimate a specific variable
through learning some historical examples or past experiences.
Two main steps are considered in the conventional cognitive
process of a machine learning algorithm. The data collection
process sets forth the attributes influencing the output (i.e., the
useful lifetime of the solder joint in electronic devices). For
a specific type of fabrication and packaging technology (here,
the considered power semiconductor packaging is TO220),
the contributory attributes for accurate estimation of the sol-
der joint’s useful lifetime can be classified into three main
categories, including thermal loading specifications, chemical
compositions (mechanical and physical properties), and solder
joint geometry [36]. The next step is to train a predictive model
for the considered output using the contributory attributes.
There exist several machine learning principles that could
be employed to train the predictive model, including the
conventional methods, correlation-driven approaches, and so
on. CDNN, proposed by Samavatian et al. [36], is employed
in this study founding the training algorithm. Fig. 1 demon-
strates the pictorial description of the CDNN structure (blue
sections). A set of relevant data as the main contributory
factors affecting the targeted output was either collected or
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Fig. 1. Workflow of the proposed iterative machine learning-aided framework
for assessing the lifetime of the solder interconnections.

created if necessary. The collected and created data need to
be cleaned in order to guarantee their accuracy for training
the predictive model. Some data need to be translated from
raw information (contributory factors) into given features
(attributes), which are the main inputs of the CDNN. With
the attributes processed, the predictive model will be trained
using the CDNN algorithm. Some of the data are considered
for validation and optimization of the predictive model.

A. Database
Collecting and creating adequate input data are of para-

mount importance in the training process of a predictive
model. In this study, we use our previous publicly available
resources [3], [36], [42] and strengthen our input data by
performing some boundary-embedded finite element method
(FEM)-based simulations and some self-healing data (the
strengthening data will be discussed in Sections II-C–II-E).
Details on the FEM procedure, conducted by Surendar et al.,
are provided in [43] and are available in the Appendix. The
data are cleaned and made ready for the new training process.
The data include the thermal loading specifications, joint
compositions (physical and material properties of the joint
zone), and solder joint geometry. Together with these feature
attributes, the useful lifetime of the solder joints in electronic
devices as the target outputs is collected [3], [36], [42];
390 simulation and 60 experimental datasets are directly

TABLE I

USED PHYSICAL PROPERTIES, THERMAL LOAD SPECIFICATIONS, AND
GEOMETRY FEATURES OF THE SOLDER INTERCONNECTIONS

extracted from the authors’ previous works concentrating on
the TO220-package power devices under diverse loading and
physical conditions. The consistency between the FEM and
experimental results was discussed in [36]. In addition to
the above 450 datasets, 300 datasets are provided with the
new FEM simulations and self-healing iterative algorithms
considering different loading and physical conditions.

B. Featured Attributes

Featured attributes (X) are considered as the inputs to the
CDNN model ( f ) for predicting the target output (Y ), i.e.,
Y = f (X). The more precise and sufficient X is, the more
accurate prediction of the target output Y will be achieved.
Not only do sufficient featured attributes affect the accuracy
of the output but also it can accelerate the discovery of the
damage evolution occurring in the solder joint material. The
featured attributes are listed in Table I. These parameters
highly influence the performance of the solder joint in elec-
tronic devices. In order to improve the training process, these
featured attributes are normalized into a specific range, namely,
[0.2 0.8], as follows:

xnew = 0.2 + (0.8 − 0.2)(x − min(x))

max(x) − min(x)
(1)

where x and xnew are the original and the scaled featured
attributes, respectively. 0.2 and 0.8 are selected as the lower
and upper boundaries, which were proven acceptable and
efficient in the previous reports [36], [44], [45].

C. CDNN Model

There exist several algorithms for training a predictive
model seeking a target output, ranging from linear algorithms,
nonlinear algorithms, and ensemble algorithms that have been
employed in the previous literature [44], [46]. In this study,
the CDNN framework, introduced by Samavatian et al. [36],
is used and further developed. CDNN is capable of considering
the correlations among the feature candidates, leading to much
more precise predictions. The algorithm contains two unique
paths and follows by a deep neural network, usually known as
fully connected layers (FCLs). A path belongs to the correlated
data in which the input feature candidates correlate each
other via the trained correlation matrices (the elements would
be derived during the training process). CDNN may have a
stack of multiple correlating, activating, and pooling layers.
Predictably, the more layers are employed, the less error will
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Fig. 2. Spread out of three major thermal loading specifications, including (a) dwelling temperature-dwelling time, (b) dwelling temperature-ramping rate,
and (c) dwelling time-ramping rate considered as the featured attributes.

exist at the expense of longer computation time. In this study,
rectified linear unit (ReLU) functions and average pooling
were used as the activation function and the pooling method,
respectively. The second path directly transfers the feature
candidates to the deep neural network. Thus, both individual
and mutual effects of the feature candidates have been properly
considered in this novel approach, which is expectedly leading
to more accurate results. Capturing the correlations among the
feature candidates makes the CDNN more precise and faster
compared to the conventional neural network (CNN) practices.
The detailed information on the CDNN predictive model is
available in [36].

D. Iterative CDNN

Although the proposed CDNN mode is capable of capturing
the correlations among the inputs leading to much higher
accuracy, it lacks the ability to capture low-/high-intensity
thermal loading conditions regarding the sparse input data. The
occurrence of low-/high-intensity thermal loading conditions is
reported in several applications [47]–[49]. Since creating data
either from simulations or experiments is too time-consuming
and costly, we further develop the proposed CDNN algorithm
by integrating several additional paths into the framework
shown with green and red sections in Fig. 1. In this procedure,
two new-generation datasets are added to the input data in
order to complete the data range for better performance of
the predictive model. The first-generation dataset is unchanged
with regard to the previously proposed CDNN in [37]. 90% of
the first-generation data were included in the training process,
and the remaining 10% were used for the accuracy verification
of the proposed ICDNN prediction model. Fig. 2 demonstrates
the dispersion of three major thermal loading specifications,
including dwelling temperature, dwelling time, and ramping
rate, all of which are considered as the featured attributes in
the model training (see Table I). The first generation data are
shown with blue filled circles. As it can be seen from Fig. 2,
the dispersion of data is sparse, and several important condi-
tions are missing. These conditions may occur in a variety of
applications, and consequently, an acceptable lifetime predic-
tion of the solder joint calls for a sufficient number of featured

attributes. In order to fulfill the data requirements, boundary-
imposed FEM simulation datasets are defined as shown with
filled red circles in Fig. 2. The boundary-embedded FEM
simulation data aim to determine and complete the boundary
conditions, the lack of which may occur in real applications.
We call these data the second-generation data, which is
directly involved in the training process of the CDNN. Second-
generation data are also used for validating the self-healing
data to fulfill the database requirements. Including filled red
and blue data shown in Fig. 2, there exist a lot of missing data
points in the data region. Therefore, it is required to perform
some simulations or experiments to investigate the damage
evolution of the solder joint in electronic devices. Since the
number of missing data is considerable and the experiments
are time-consuming, we propose an iterative CDNN (ICDNN)
for training the predictive model. The predictive model is
iteratively updated and healed with the arrival of new self-
healing data. In this regard, a set of self-healed data, shown
with filled green circles in Fig. 2, is applied to the trained
predictive model to fulfill the data dispersion. The predicted
output of each self-healing data is compared to the vicinity
actual data (measured and simulated) and is considered in the
training process, provided that it satisfies a predefined range
of error. If the error limits are violated, the specified self-
healing data are eliminated from the training process, called
unsuccessful self-healing data, which are shown by dashed
circles in Fig. 2. Therefore, the ICDNN algorithm can be
implemented through the following steps.

1) The database is processed and cleaned. The most critical
featured attributes (i.e., thermal loading specifications)
are chosen, and their dispersions across each other
are determined. Based on this analysis, some boundary
conditions are characterized with which the FEM simu-
lations or experiments are performed in order to increase
the database density.

2) Both initial data (blue circles) called first-generation
data and those from the boundary-embedded FEM
simulation (red circles) called second-generation data
are used in the training process of the predictive
model.
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Fig. 3. Neural network predicted values versus the actual values. (a) Iterative CDNN, (b) CDNN, and (c) CNN.

3) Then, self-healing data, needed to fulfill the data dis-
persion (green circles) called third-generation data, are
applied to the trained predictive model. The predicted
target output (i.e., the useful lifetime of the solder joint)
is compared with the actual useful lifetime of the solder
joint in the vicinity of the input data, including the first-
and second-generation datasets. The self-healing data
are involved in the next training process provided that
its predicted output is sufficiently close to the vicinity-
actual output with the prespecified error (here, assumed
to be +/−5%).

4) This training process is iteratively performed until all
the self-healing data are considered. During this step,
the self-healing data, which violates the predefined error,
maybe crossed out from the training process. All other
featured attributes, including the joint chemical compo-
sition and its geometry, are considered randomly within
the maximum and minimum of the first-generation
database.

E. ICDNN Performance

The performance and ability of the proposed model may be
quantified by comparing the actual and predicted target out-
puts. The performance of the regression models is calculated
using the correlation factor r [44]

r =
���� n�

i=1

(ŷi − ȳ)2

�
n�

i=1

(yi − ȳ)2 (2)

and the root mean square error (RMSE)

RMSE =
���� n�

i=1

1

n
(ŷi − yi)

2 (3)

where ŷi , yi , and ȳ are predicted, actual, and mean values of
the actual output, respectively. r values are within [0 1], where
1 represents the perfect fit.

III. NUMERICAL RESULTS AND DISCUSSIONS

A predictive model was trained using the proposed ICDNN
algorithm in order to estimate the useful lifetime of the solder
joint in electronic devices. To demonstrate the performance
of the proposed iterative algorithm, the predicted results of
the target output (i.e., the useful lifetime of the solder joint)
are compared to the actual target output using three different
training processes, namely, CDNN, ICDNN, and CNN. The
results are shown in Fig. 3. 80 correlation matrices were
considered with the dimensions of 3 × 3, where three hidden
layers exist in the algorithm with the same number of neurons
(50) for all frameworks [36]. Using the same computing sys-
tem, the elapsed times were estimated 618, 103, and 76 s for
ICDNN, CDNN, and CNN, respectively. Although the training
time was increased six times, one can see that the proposed
ICDNN framework offers a more trustworthy performance in
lifetime estimation of the solder joint in electronic devices.
As mentioned, 10% of the data were not included in the
training process in order to investigate the performance of the
prediction model. Regarding Fig. 3, the testing data can verify
that the accuracy of the lifetime prediction model is adequately
acceptable in all frameworks (the ICDNN algorithm has the
best performance). As mentioned earlier, two different sets of
data, i.e., the boundary-embedded and self-healing datasets,
were included in the training process in order to enhance
the performance and validity of the predictive model. The
RMSE values of the CNN, CDNN, and ICDNN models are
limited to 6.78%, 5.67%, and 2.12%, respectively. It reveals
that the rms error between the predicted and the actual target
output is by far lower in ICDNN than that of the CDNN and
CNN, further highlighting the more acceptable performance
of the proposed ICDNN algorithm. This observation is further
supported by the much higher correlation factor in the ICDNN
compared to the CNN and CDNN algorithms. The correlation
factors calculated ate 0.9784, 0.8541, and 0.7559 for ICDNN,
CDNN, and CNN, respectively. This indicates that the new
model includes two new sets of data in the training process
offering a more accurate prediction. The reason, of course,
is originated from the fact that the database was thoroughly
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Fig. 4. Comparison between the experimental solder joint lifetime measure-
ments and the FEM and the self-healing solder joint lifetime estimation.

healed and fulfilled via injecting new datasets and conducting
the training process iteratively. In this case, missing input
data could be reconstructed in the training process, leading
to higher accuracy of the predictive model. For evaluating
the accuracy of the input datasets, including the first, second,
and third datasets, the predicted solder joint useful lifetime
is compared to the actual lifetime under the same loading
and physical conditions. In this regard, Fig. 4 demonstrates
the RMSE between the actual and the predicted solder joint
lifetime for the individual datasets. As can be seen, there
exists 4.1% error between the FEM-based simulation and the
experimental results for the first generation data. The RMSEs
are 6.8% and 7.9% for the second- and third-generation data,
respectively. Generally, the estimated solder joint lifetime is in
good agreement with the experimental results. The individual
results were also studied, where it is found that the largest
error was directed to the Sn–Pb solder joint in which insuf-
ficient data were collected or created. Overestimation in the
predictive model was trigged whenever the base materials are
aluminum, as was also reported in [36]. In contrast with the
results reported in [36], no considerable underestimations were
reported due to the proposed iterative framework. A few data
points appear still farther than the ideal dashed line, which may
be due to the inaccuracies in experimental tests or simulation
outcomes of the literature.

The dwelling time, temperature, and ramping rate are
the main failure activations that can directly stimulate the
creep and fatigue failure mechanisms inside the solder joint
in electronic devices. Conventionally, creep and fatigue are
considered as two separate failure mechanisms for which the
associated damage may linearly accumulate and expedite
the global failure in the electronic devices [50–[53]. However,
the coupling effects among these two failure mechanisms have
significant physical impacts on the degradation of the solder
joint. It was proven that the creep phenomena may alter the
mechanical properties of the solder joint, which finally affects
its failure mechanism [54]. The results reported in [55] have
validated the increase in the shear strength as the creep strain
rate increases. According to (4), the solder joint ductility
decreases as the creep strain rate increases [42], [56], [57]

ε�
f = ε�

f 0 − p log ε̇c (4)

where p is the material-dependent coefficient extracted from
the ductility and the strain rate fitting under the material
experiments, ε�

f 0 is the initial fatigue ductility coefficient,
and ε̇c is the stable creep strain rate. Hence, the well-known
Coffi–Manson fatigue lifetime model may be written as fol-
lows [58]:

�εp

2
= �

ε�
f 0 − p log ε̇c

�
(2NF )c (5)

where �εp is the plastic strain induced in the solder joint,
while NF and c are the number of cycles to the failure and
material-dependent fatigue ductility exponent, respectively.
Using linear damage accumulation, one can express the one-
cycle damage as follows:

DF = 1

NF
= 2

⎛
⎝ �εp

2
�
ε�

f 0 − p log ε̇c

�
⎞
⎠

− 1
c

. (6)

For n-cyclic loads during a period of time, the accumulated
damage can be written as follows:

DF (t) =
n�

i=1

1

NFi
=

n�
i=1

2

⎛
⎝ �εpi

2
�
ε�

f 0 − p log ε̇c

�
⎞
⎠

− 1
c

. (7)

Consequently, the aforementioned damage can be considered
as two separate damages, as shown below

DF (t) = D f (t) + Dfc(t) (8)

where D f is the pure fatigue damage and Dfc is the damage
originated from the coupling effects of the creep on the solder
joint fatigue lifetime.

On the other side, the applied stress σD at the accumulated
damage D can be determined as

σD = σ0

1 − D
(9)

where σ0 is the initial applied stress and D is the global
accumulated damage originated from both fatigue and creep
phenomena. Regarding (9) and the working environment of
the solder joint, including severe cyclic loads and ongoing
high temperature, the creep strain rate can be written as
follows [42]:

ε̇c(D(t)) = A

�
σ0

1 − D

�n

exp

�−Q

RT

�
(10)

where A and n are the material-dependent coefficient and
exponent, respectively. R, Q, and T are universal gas constant,
activation energy, and absolute temperature, respectively.

Accordingly, the evolved creep damage can be formulated
as follows using the Monkma–Grant model [42]

DC (t) = �t

tc
= �t

�
ε̇c(D(t))

CMG

� 1
β

(11)

where CMG and β are material-dependent constant and expo-
nent, respectively. �t is the dwelling time at which the solder
joint is subjected to high absolute temperature.
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Fig. 5. Ternary useful lifetime distribution map of the solder joint considering different damage partitions for (a) Sn–Pb, (b) SAC305, and (c) SAC387 solder
alloys.

Consequently, the aforementioned damage can be consid-
ered as two separate damages, as given below

DC(t) = Dc(t) + Dcf(t) (12)

where Dc is the pure creep damage and Dcf is the damage
originated from the coupling effects of the fatigue on the solder
joint fatigue lifetime. In this regard, one can assume that there
exist three damage evolutions in the global solder joint aging
mechanism as follows:

D(t) = Dc(t) + D f (t) + D�(t) (13)

where

D�(t) = Dfc(t) + Dcf(t). (14)

Hence, a ternary analysis is required as defined in (13) in
order to capture the coupling effects of the creep and fatigue
phenomena on the damage evolution of the solder joint.
Mathematically, one can consider the failure occurrence in
the solder joint provided that the sum of the ternary damages
reaches one. For further explanation, a ternary map of the
useful lifetime is taken into account in order to investigate
the effects of different damages on the solder join’s life-
time. In this regard, three different widely-used solder alloys,
namely, SnPb, SAC305, and SAC387, were studied, each of
which comprises different mechanical properties that affect the
solder joint aging. Extracted from the ICDNN machine learn-
ing algorithm, the ternary useful lifetime map is illustrated in
Fig. 5. The ternary maps were constituted with the vicinity of
different damages, as shown in (13). Each of the ternary points
in the map was achieved by adjusting the thermal cycling
load specifications, including the dwelling time, the dwelling
temperature, and the ramping rate [20], [36]. It was proven that
the ramping rate has the most influence on the fatigue damage
evolution, while the dwelling temperature and time have the
most effects on the creep damage evolution [42]. Meanwhile,
due to the coupling effects between the fatigue and creep
phenomena, the thermal cycling load specifications may affect
both creep and fatigue damage evolutions. For this reason,
trial and error were employed in order to provide a unique
ternary point in the solder joint lifetime map. The geometry
of the solder joints was kept identical for all solder alloys.

From this figure, one can find that the performance of the
SAC387 under different temperature cycling loads was gen-
erally better in comparison with other solder alloys. The
minimum useful lifetimes of the solder joints are found 24 485,
25 232, and 25 717 h for SnPb, SAC305, and SAC387, respec-
tively. The asymmetrical useful lifetime map is due to the
diverse mechanical properties of the solder joints from SnPb
to SAC solder alloys. For SnPb solder alloy [see Fig. 5(a)],
it is observed that the lowest useful lifetime of the solder joint
was realized in the higher creep damage zone (0.35 < Dc <
0.75) and the lower fatigue damage zone (0.10 < D f < 0.22).
In this condition, the remaining damage evolution belonged
to fatigue-creep coupling damage. For the SAC305 solder
alloy [see Fig. 5(b)], the most vulnerable zone was found in
the higher fatigue damage (0.45 < D f < 0.70) and lower
creep damage (0.10 < Dc < 0.30) regions. In this condition,
the remaining damage evolution belonged to the fatigue-creep
coupling damage. For the SAC387 solder alloy [see Fig. 5(c)],
the map shows a more outspread condition in which the lowest
useful lifetime of the solder joint occurred in creep damage
zone of 0.20 < Dc < 0.55 and the fatigue damage zone
of 0.30 < D f < 0.75. It was also revealed that the creep
damage has a lower share in the global aging of the solder
joint in SAC-based solder alloys, while the Pb-based solder
alloy suffers more from fatigue damages. These observations
are primarily driven by the material and mechanical properties
of these solder alloys. SAC-based solder alloys with a higher
young module (50 and 61.2 GPa for SAC305 and SAC387,
respectively) and higher melting temperatures (220 ◦C and
217 ◦C for SAC305 and SAC387, respectively) in comparison
with Pb-based solder alloys with a young module of 32 GPa
and melting temperature of 183 ◦C show more obstruction
against creep mechanism. However, the creep phenomenon is
more critical to SnPb solder alloy due to its lower melting
temperature. These mechanical properties also lead to higher
fatigue damage in SAC-based alloys in comparison with
SnPb-based solder alloys.

From a geometry point of view, we focus on as the most
important geometry parameter in the solder joint aging and
consider different solder joint thicknesses from 30 to 50 μm
to analyze the effect of solder layer thickness on the damage
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Fig. 6. Quaternary solder joint lifetime distribution map as the solder layer thickness decreases.

distribution and lifetime ternary map [20], [42]. In this regard,
we considered the SAC387 solder alloy with the above same
conditions but with different solder joint thicknesses. The
ternary useful lifetime maps were extracted from our pro-
posed ICDNN machine learning algorithm and constituted
a quaternary map including three damages and solder joint
thickness, as shown in Fig. 6. One can easily see, from the
results in Fig. 6, that, as the thickness decreases, the useful
lifetime of the solder joint appears longer, and as the thickness
continues declining, it again becomes shorter. Hence, there
exists an optimum solder layer thickness with respect to the
solder joint useful lifetime. This is primarily due to the failure
mechanism trigging in the solder joint and shows that the
minimum failure event (damage evolution) may occur in an
optimum solder layer thickness. This can be a good starting
point when designing the device.

Further evaluating the results shown in Fig. 6, one can find
that, as the thickness decreases, the solder joint lifetime map
distribution changes correspondingly. At the thicker solder
layer, fatigue damage is dominant, and the lowest solder joint
lifetime occurs in the vicinity of the maximum fatigue damage.
As the solder layer thickness decreases (reaching 40 μm), both
fatigue and creep failure mechanisms were equally involved in
the solder joint aging. As the solder joint thickness continues
to decrease, the creep damage becomes more dominant, and
the lowest solder joint lifetime occurs in the vicinity of the
maximum creep damage. Accordingly, the thicker the solder
layer is, the weaker it will be against the fatigue failure
mechanism; similarly, the thinner the solder layer is, the
weaker it will be against the creep failure mechanism. Such
variations in the lifetime distribution map are justified since,
as the thickness decreases, the variation of the energy density
in the solder joint became sharper resulting in higher void
nucleation in the solder joint [59]. Accordingly, the maximum
stored energy would occur in the minimum thickness and
activate the creep failure mechanism. At the thicker solder
layer, the stored energy density decreases due to the higher
solder joint volume, and thus, the creep failure mechanism
is weakened in comparison with the thinner solder layer.
However, the thicker the solder joint is, the more significant
the CTE mismatch role plays in activating and intensifying
the fatigue failure mechanism. Hence, the electronic device
tolerates more fatigue damage in the maximum thickness.
From the solder joint’s thickness point of view, a balance
between CTE mismatch and the energy density effects occurs
in an optimum solder layer thickness.

Fig. 7. Discrete To220-package power device. (a) Structure (dimensions
in mm). (b) Meshed mode.

IV. CONCLUSION

This article has established a novel iterative machine-
learning-aided framework based on the CDNN to enhance the
prediction of the solder joint’s useful lifetime. This improve-
ment in the prediction accuracy is achieved by injecting a
self-healing dataset to fulfill the data dispersion. In addition
to the initial dataset, a boundary-embedded FEM simulation
approach was pursued to create and inject a new dataset
into the predictive model with the goal of further enhancing
the lifetime estimation performance. The results showed a
lower RMSE (3.55% reduction) compared to a conventional
prediction model. The share of the creep damage, fatigue
damage, and creep-fatigue coupling damage was highlighted,
while three different solder alloys, including SnPb, SAC305,
and SAC387, were employed in the case studies. Ternary
damage evolution of the SAC387 joint with a diverse range
of solder layer thicknesses was also discussed. It was revealed
that, while creep damage is dominant in the thinner solder
layer, fatigue damage is the one governing in the thicker solder
layer. In this case study, an optimized solder joint was found in
which both creep and fatigue damages were at their minimum
values.

APPENDIX

FINITE ELEMENT SIMULATION

FEM simulations were employed to characterize the creep
and the fatigue behavior of the solder joint under different
conditions, namely, thermal loading, chemical composition,
and geometry. Hereof, ABAQUS finite element environment
was used to investigate the induced thermomechanical stresses
and strains in the solder joint. Fig. 7 depicts the TO220-
package power semiconductor FEM model with its internal
parts. The power semiconductor consists of different parts,
including the epoxy, the baseplate, the chip, and the solder
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TABLE II

PROPERTIES OF THE DIFFERENT PARTS
IN THE POWER SEMICONDUCTORS

joint with different material properties, as listed in Table II.
Different material and physical properties of the different parts
in power devices are known as the primary root cause of
failure since they have distinct behaviors under a specific
thermal loading condition. The mesh of assembly included
52 300 elements and 73 126 nodes. The joint zone as the most
vulnerable part in the semiconductor consists of the solder
part, chip, and baseplate. Regarding their physical properties,
these materials experienced severe expansion and contraction,
which would initiate and propagate voids and cracks in the
solder joint. The induced strain in the solder joint characterized
by (4) and (10) can be directly extracted from the FEM
simulations, which were subsequently employed in the solder
joint damage model in (13).
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