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Abstract—The precise minute time scale forecasting of an 

individual Photovoltaic power station output relies on accurate 
sky image prediction. To avoid the two deficiencies of traditional 
digital image processing technology (DIPT) in predicting sky 
images: relatively limited input spatiotemporal information and 
linear extrapolation of images, convolutional auto-encoder 
(CAE) based sky image prediction models are proposed 
according to the spatiotemporal feature extraction ability of 2D 
and 3D convolutional layers. To verify the effectiveness of the 
proposed models, two typical DIPT methods, including particle 
image velocimetry (PIV) and Fourier phase correlation theory 
(FPCT) are introduced to build the benchmark models. The 
results show that the proposed models outperform the 
benchmark models under different scenarios. 

Keywords—Solar PV power forecasting, minute time scale, sky 
image, convolutional auto-encoder, spatiotemporal feature 

I. INTRODUCTION 
With the increase of solar PV integrated capacity [1], the 

difficulty of stable operation of power system is also 
increasing. Influenced by weather conditions and 
meteorological factors, solar PV power has significant 
uncertainty [2]. In order to reduce the difficulty of the 
operation, the key lies in weakening the uncertainty of solar 
PV power, one kind of effective methods is solar PV power 
forecasting [3]. 

Output of a single photovoltaic power plant is mainly 
influenced by the surface irradiance [4], while the surface 
irradiance is dominantly impacted by the clouds with complex 
distribution over the plant [5]. When the clouds change 
drastically on the minute time scale [6], the surface irradiance 
will show significant nonlinear fluctuation. The larger the 
capacity of a single station, the more serious the adverse effect 
of this fluctuation on power grids. Accurate minute time scale 
solar PV power forecasting is propitious to the stability of 
power system operation, the consumption of solar PV power 
and electricity market operation. Such methods use ground-
based sky images commonly and are usually carried out in two 
steps: the first step is cloud distribution prediction, which 
means sky image prediction; the second step is to establish a 
mapping relationship from cloud distribution to the surface 
irradiance, then to the output. This paper only focuses on the 
first step. 

At present, the traditional sky image prediction research 
adopts digital image processing technology (DIPT). The 

research content is to use two adjacent images with high image 
resolution to calculate the cloud displacement vector, and then 
use the cloud displacement vector to linearly extrapolate the 
current image to get a prediction image. The above three 
images get the same time resolution. The research can be 
divided into two categories: the first is based on image gray 
information and the second is based on image Fourier 
frequency domain. The first type of methods include scale 
invariant feature transform [7], optical flow [8] and particle 
image velocimetry (PIV) [9], among which PIV is widely used; 
however, the stability and accuracy of these methods are poor 
to some extent [10]. The second type of methods can describe 
the difference between images by using mathematical 
expressions in less computing resources and shorter 
computing time [11], and Fourier phase correlation theory 
(FPCT) is widely used. However, the DIPT based research 
needs an idealized hypothesis: the cloud distribution in two 
adjacent images are same on the minute time scale, which 
leads to two problems affecting the prediction performance: 
one is the relatively limited length of the input image sequence, 
which means the input spatiotemporal information may be not 
rich enough; the other is the idealized linear assumption, 
which means the prediction error could be introduced into the 
models from the beginning. 

In addition to DIPT, sky image prediction can also draw 
lessons from the video prediction models based on deep 
learning. Video prediction models are usually complex and 
deep convolutional auto-encoders (CAEs) [12-14] in which 
convolutions include 2D convolution and 3D convolution. 
Convolutional neural network is a deep learning model widely 
used in the field of computer science [15]. An auto-encoder is 
an unsupervised deep learning model. For video prediction 
models, their input and output are image sequences and can be 
flexibly set lengths according to the need, which means that 
models can easily input more than two images. Thus, more 
abundant spatiotemporal information can be input and then 
prediction performance of models can be improved. Moreover, 
such models can fit the complex nonlinear relationship 
between input and output automatically [16], which means 
spatiotemporal features can be effectively learned without 
idealization, thus avoiding the introduction of correlative 
errors.  

In summary, the first kind of models, CAE based sky 
image prediction models, are first established, which have 2D 
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and 3D forms. As controls, then the second kind of models, 
DIPT based sky image prediction models, are established 
using PIV and FPCT. Third, 5 different prediction scales are 
considered on the practical dataset, and the performance of 
CAEs and DIPT are compared under each scenario. The 
results under 5 scenarios indicate the performance of CAEs is 
superior to that of DIPT and the best model under each 
scenario is given.  

In sum, the main contributions in this paper include: 
(1) 2D-CAE based and 3D-CAE based sky image 

prediction models are proposed to avoid the two deficiencies 
from DIPT based sky image prediction models. 

(2) The comparison between CAE based methods and two 
widely used DIPT methods (PIV and FPCT) is simulated to 
verify the superiority of the proposed models under 5 different 
prediction scales. 

The rest of this paper is organized as follows. Section II 
introduces the above two kinds of models. Section III shows 
data processing and assessment metrics. Section IV presents 
the simulation design, results and discussion. Finally, Section 
V highlights the concluding remarks. 

II. METHODOLOGY 

A. Convolutional Auto-encoder (CAE) Based Sky Image 
Prediction Models  
The proposed CAEs consist of convolutional layers and 

transposed convolutional layers. The two types of layers are 
the same in the calculation theory, the main difference 
between them is generally that a convolutional layer generates 
a down-sampled feature map while a transposed convolutional 
layer generates an up-sampled one [17]. Their equations are 
described as follows: 
   (1) 

where  denotes the i-th weight kernel in the j-th layer,  
represents the input corresponding to ,  is the bias of 
the j-th layer,  is the output feature map of the j-th layer 
and  is an activation function.  

Convolution operations including 2D convolution and 3D 
convolution is depicted as Fig. 1. A 2D convolution kernel has 
two directions to move, so 2D convolution applied on multiple 
frames stacked together generates a feature map. A 3D 
convolution kernel has three directions to move, so 3D 
convolution applied on multiple frames generates an output 
volume [18]. Under the same conditions, 3D convolution is 
finer than 2D convolution in terms of spatiotemporal feature 
extraction, but which means longer computation time. 

For the structure of an auto-encoder, there are two kinds 
of descriptions: one contains an input layer, hidden layers and 
an output layer, the other contains an encoder, a bottleneck 
layer and a decoder. For the CAEs proposed in this paper, 
hidden layers consists of convolutional layers or transposed 
convolutional layers, and an output layer is a convolutional 
layer. The output of each layer is successively processed by 
batch normalization (BN) [19] and an activation function 
named as LeakyReLU [20]. A CAE with three hidden layers 
is shown in Fig. 2, whose structure conforms to the remaining 
CAEs in this paper. In Fig. 2, the encoder contains an input 
layer and a convolutional layer, the bottleneck layer is a 
convolutional layer, and the decoder contains a transposed 
convolutional layer and an output layer. 

In CAE based sky image prediction models, an input 
image sequence information is compressed when passing 
through an encoder and a bottleneck layer successively. Then 
the condensed information is used by a decoder to predict a 
future frame. If t0 is the time point to implement image 
prediction and n is the length of an input image sequence, the 
type of models can be described as follows: 
  (2) 

where  is the time resolution of the predicted sky image; 
 represents the predicted sky image generated by a 

CAE;  represents a CAE based sky image prediction 
model;  is the sky image at ;  is the time resolution of 
input images. 

B. Digital Image Processing Technology (DIPT) Based Sky 
Image Prediction Models 
PIV first divides both input images into small block 

regions, and then computes the cloud displacement vector by 
matching these blocks [9]. For FPCT, it uses Fast Fourier 
Transform to realize the interconversion between image space 
domain and frequency domain [11]. Firstly, Fourier 
Transform of two input images is calculated and then used to 
calculate the cross-power spectrum. Finally, the cloud 
displacement vector is obtained by the inverse Fourier 
Transform of the cross power spectrum. PIV and FPCT are 
used to construct two determined models which generate a 
predictive image by linear extrapolation of the image at t0. The 
type of models can be described as follows: 
   (3) 

where  is the predicted sky image generated by a 

DIPT based method;  is a DIPT based sky image 
prediction model; besides, , . 

 
Fig. 1. Convolution operation. 
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Fig. 2. The architecture of a convolutional auto-encoder. 

III. DATA PROCESSING AND ASSESSMENT METRICS  

A. Data Processing 
The sky images used in this paper are from the PV power 

station in Alamosa, Colorado, which are available on the 
National Oceanic and Atmospheric Administration (NOAA) 
website [21]. Their UTC time span is from May 22 2015 to 
May 31 2015. For each image, the time resolution is 0.5 min 
and the size is 288×352. 

After data cleansing, the processing of an image is shown 
as Fig. 3, with the image resolution marked below each image. 
A sky image has a corresponding cloud analyzed image, as 
shown in Fig. 3(d) and (a), respectively. The white region in 
the cloud analyzed image only corresponds to the sky, and it 
can be used to remove the non-sky noise information in the 
sky image, thus obtaining the sky information. Specifically, 
first, the rectangular picture having the white area is obtained 
as Fig. 3(b) and the clipping coordinates are retained. Second, 
Fig. 3(c) is obtained by binarizing the pixel values of the Fig. 
3(b). Thirdly, Fig. 3(e) is obtained by using the clipping 
coordinate to cut the Fig. 3(d). Fourthly, Fig. 3(f) is obtained 
by pixel-wise calculation between Fig. 3(c) and Fig. 3(e). 
Fifthly, Fig. 3(f) is transformed into the grayscale one as Fig. 
3(g). Sixthly, Fig. 3(h) is obtained by downsampling Fig. 3(g). 
It should be noted that limited to the hardware condition, and 
in order to reduce the training difficulty of CAE based sky 
image prediction models, the sky images used are grayscale 
images with resolution of 32×32. Finally, 16456 image 
sequences are obtained in the dataset. Each image sequence 
contains 20 consecutive images, the first 10 are used to 
construct input and the last 10 are used to construct output. 
The dataset is divided according to the time order, the training 
set accounts for 80%, the validation set accounts for 10%, and 
the test set accounts for 10%. For CAE based sky image 
prediction models, the training set is used for model training, 
the validation set is used for model selection, and the test set 
is used for model test. DIPT based sky image prediction 
models only uses the test set. 

B. Assessment metrics 
Structural similarity (SSIM) and mean squared error (MSE) 

are introduced to evaluate the performances of sky image 
prediction models. SSIM is used to measure the similarity of 
structural information between two images, whose value 
range is [0, 1] [22]; while MSE is used to measure the 
similarity of gray values between two images. The larger the 
SSIM of two images is, the more similar their structures are; 
the smaller the MSE of two images is, the more similar values 
of their pixels are. 

 
Fig. 3. Sky image processing. 

If x and y are two images with same resolution of , 
their SSIM is the product of luminance comparison , 
the contrast comparison  and the structure comparison 

, the three comparisons are expressed as Equations (4)-
(6). 

   (4) 

   (5) 

  (6) 

where  and  respectively represent the mean value of all 
the pixels in x and y, , and  respectively represent the 
standard deviation,  is covariance between x and y. , 

 and  are three constants to avoid denominator very 
close to zero, and they can be respectively described as 
follows: ,  and . In 
general, ,  and . Finally, SSIM 
is described below: 

   (7) 

For x and y, MSE is described as follows:  

   (8) 
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where  and  represent the pixel values of 
coordinate  in x and y respectively. 

IV. SIMULATION  

A. Simulation Design 
Two types of models in this paper predict an image. As 

can be seen from Table I, five prediction scales are set in this 
paper, each corresponding to one time resolution of the 
predicted images. The input and output schematics of the two 
types of models are shown in Fig. 4. The predicted images in 
the five situations are respectively filled with 5 colors. As 
shown in Fig. 4(a), 10 consecutive images are fed into the first 
type of model in each situation. In each situation of Fig. 4(b), 
the sky image at  and the sky image at  is input into 
the second type of model, and the latter is the same filling 
color as the sky image at . 

In this paper, the four different structures are set for 2D 
CAEs and 3D CAEs, respectively, as shown in Fig. 5. The 
number of hidden layers (NHL) of each structure is 3, 5, 7 and 
9 respectively. Since Adam optimizer performing a random 
gradient descent is used during the training process [23], each 
evaluation of a CAE is slightly different. To mitigate this 
randomness, each CAE is evaluated 10 times in each situation, 
the median of 10 evaluation values is taken as the performance 
evaluation value. Furthermore, each PIV based or FPCT based 
sky image prediction model is evaluated only once in each 
situation due to its determination. 

B. Results and Discussion 
The comparison results of SSIM and MSE from the two 

types of models are shown in Fig. 6 and Fig.7, respectively. 
As the time resolution of the output image decreases, the 
spatiotemporal correlation between input and output also 
decreases, which makes the prediction more difficult and 
finally leads to the obvious deterioration of the performances. 
Besides, although the optimal values in each scenario are 
always obtained by a CAE, the optimal model in different 
scenarios is not only one structure. On the one hand, this 

indicates the superiority of the predictive performance of the 
first type models; on the other hand, this also shows that CAE 
based models need to compare the performance of different 
structures to find better models, which is exactly the inherent 
disadvantage of such models.  

TABLE I.  INPUT AND OUTPUT SETTINGS OF THE TWO TYPES OF 
MODELS 

Scenario 
Number 

CAE based models (n=10) DIPT based models (n=2) 
    

1 0.5 0.5 0.5 0.5 

2 0.5 1 1 1 

3 0.5 2 2 2 

4 0.5 3 3 3 

5 0.5 4 4 4 

 
Fig. 4. Input and output of the two types of models. 

 
Fig. 5. Four architectures of convolutional auto-encoders. 
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The mean results of SSIM and MSE from the two types of 
models are shown in Table 2 and Table 3, respectively, where 
bold numbers represent the optimal values in each situation. 
When  min in Table II and  min in Table III, 
performance evaluations of 2D CAEs is smaller than but very 
close to the optimal values generated by 3D CAEs. What’s 
more, as shown in Fig. 6 and Fig.7, in different structures 
under different situations, the best performance of 2D CAEs 
are basically better than that of 3D CAEs. The above two 
results show that in each situation, 2D convolution is more 
superior in sky image prediction compared with the 3D 
convolution, although 3D convolution has finer extraction of 
spatiotemporal features than 2D convolution.  

As depicted in Table II and Table III, the best models are 
2D CAEs containing 5 and 3 hidden layers respectively when 

 min and  min, but the optimal model cannot 
be judged directly from the values of SSIM and MSE in the 
remaining three situations. However, the relatively good 
models in the remaining three situations can be obtained 
through details in Fig. 6 and Fig.7. In the remaining three 
situations, for 2D CAEs containing 5 hidden layers, their 
SSIM values are or very close to the best but their MSE values 
are relatively far from the best. While for 2D CAEs containing 
3 hidden layers, their SSIM values very close to the best and 
their MSE values are the best. Therefore, the 2D CAEs with 3 

hidden layers are chosen as the best models in these three 
situations. Finally, the best model in each situation is obtained, 
with a view to providing reference for further research. 

TABLE II.  MEAN SSIM VALUES OF TWO TYPES OF MODELS 

 
Best 2D CAEs Best 3D CAEs PIV FPCT 

Values NHL Values NHL Values Values 

0.5 0.9953 5 0.9953 5 0.9840 0.9834 

1 0.9889 5 0.9890 5 0.9608 0.9612 

2 0.9692 5 0.9678 5 0.9289 0.9277 

3 0.9475 5 0.9444 5 0.9096 0.9068 

4 0.9291 3 0.9259 5 0.8962 0.8929 

TABLE III.  MEAN MSE VALUES OF TWO TYPES OF MODELS 

 
Best 2D CAEs Best 3D CAEs PIV FPCT 

Values NHL Values NHL Values Values 

0.5 5.12 5 5.22 5 13.06 15.72 

1 14.14 3 15.24 3 33.07 37.45 

2 11.84 3 12.12 3 67.62 75.47 

3 15.90 3 15.88 3 96.77 106.18 

4 15.07 3 15.17 3 123.84 132.96 

 
Fig. 6. SSIM comparison of the two types of models. 
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Fig. 7. MSE comparison of the two types of models. 

V. CONCLUSION 
It is important for the minute time scale output forecasting 

of a single photovoltaic power station to achieve accurate sky 
image prediction. To avoid the shortages of DIPT based sky 
image prediction methods, 2D-CAE based and 3D-CAE based 
sky image prediction models are proposed. In this paper, four 
structures are designed for CAE based models, and the control 
models are built by using two typical DIPT methods: PIV and 
FPCT. Under five prediction scales, two conclusions can be 
drawn according to the comparison. The first is that all the best 
performances are obtained by CAE based models, which 
means the CAEs are superior to DIPT in sky image prediction 
under given cases. The second is that 2D CAEs are basically 
better than 3D CAEs when it comes to the performances of 
sky image prediction. In addition, the best structure under each 
scenario are pointed out in order to aid in further study. 

In fact, the impacts caused by deep penetration of 
renewable energy on generation flexibility and operating costs 
of power grid [25] are significant and reflect in many aspects 
not only include power forecasting [26-28] for supply-demand 
balancing and energy trading under various scenarios [29-31], 
but also refer to load forecasting/load pattern [32-35], demand 
response applications [36-38], aggregator aggregated capacity 
forecasting and multi-aggregator scheduling with plenty 
distributed PV systems [39-41]. The above mentioned 
research topics will be conducted in the future works. 
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