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Abstract

Date-Driven Topology Identification in Power Distribution Systems
with Machine Learning

With the increase in demand for quality electricity and the number of

end-use consumers, the operation and control of power grids have become

more and more complex and challenging. Ensuring acceptable reliability

and quality of the electricity supply has become particularly important to

every aspect of our electrified economy. Due to the growing deployment

of Micro-Phasor Measurement Units (µPMUs) in power distribution grids,

an abundance of high-resolution measurements is available that can be

harnessed for smarter operation and fault analyses in power distribution

networks. Traditional models have revealed limitations on the network topol-

ogy identification which may occupy manpower and material resources with

no guaranty to effectively restore power in a short time period when facing

faults and other disruptions. This thesis suggests and implements a ma-

chine learning framework that uses the µPMU measurements as inputs and

provides a full observation of the network topology in real-time. Specifically,

the proposed framework employs a Convolutional Neural Network (CNN) to

identify the physical state of the power network at all times. The framework

was evaluated on the IEEE 34-Node Test Feeder, where the experiments

show that the proposed CNN can achieve a promising performance with

high accuracy even when the µPMU measurements contain noises and/or

missing entries.
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Chapter 1: Introduction

1.1 Background

With the development of modern electrical systems for half a century,

there are more and more opportunities to enhance the safety, economics,

reliability, sensitivity, and flexibility of the power system. For a long time, the

complicated and challenging electrical structure of the power distribution

grid, insufficient measurement configuration and utilization, information

and measurement sparsity, and other problems have spread throughout

the network layout, where an improvement in the monitoring and control-

lability may affect the reliability of the power supply, power quality, and

the economics of the system operation. In order to generate and dispatch

the electrical power efficiently and operate the power grid stably and safely,

system operators need to be informed of the electrical network topology

and demand profiles across the network at all times. The observability and

controllability of the electrical network are essential to ensure its safe and

economic operation. The existing distribution network Feeder Terminal Unit

(FTU), distribution Transformer Supervisory Terminal Unit (TTU), Remote

Terminal Unit (RTU) and some other measuring equipment do not provide

synchronized measurements; and the uploaded measurements are minutely,

which makes it difficult to meet the intelligent fast-speed operation and

control of the power distribution systems [7–12]. Hence, with the growing

complexity in the power grid structure reinforced with heterogeneous re-

sources and the increasing demand for electricity needed for an electrified

economy, Phasor Measurement Units (PMUs) have been introduced and

widely deployed to observe the dynamic performance of the power grid with
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synchronized measurements [13–23]. Accordingly, an abundance of high-

resolution data is now becoming available for further analysis and informed

decision making.

As synchrophasor data becomes more available, there is an increasing

need to be able to effectively process and analyze the data to ultimately

improve the ways power systems are operated. In power distribution sys-

tems, Micro-PMUs (or µPMUs) are used [24]. Combined with the topological

processing of the visual images, based on the measurements provided by

µPMU, one can better handle the abnormal conditions in the grid (i.e., fault

location, fault detection, etc.), thereby reducing the enormous economic

consequences and improving the power grid resilience. Compared to the tra-

ditional event detection schemes and infrastructure such as FTU, TTU, and

RTU, Micro-PMUs (µPMUs) in power distribution grids offer yet-untapped

potential for online situational awareness, i.e., event detection, classification,

and high-fidelity high-resolution measurements.

1.2 Smart Grid Resilience

Smart grids, where cyber-infrastructure is used to make power dis-

tribution more dependable and efficient, are prime examples of modern

infrastructure systems. The cyber-infrastructure provides monitoring and

decision support intended to increase the dependability and efficiency of

the system. However, this comes at the cost of vulnerability to accidental

failures and malicious attacks, due to the greater extent of virtual and

physical interconnection. Any failure can propagate more quickly and ex-

tensively, and as such, the net result could be a compromised reliability

and security [25,26].

Reliability and Resilience are two different concepts in power grids.
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The overall reliability of a cyber-physical power grid is a function of the

respective reliability of its elements, including both physical components,

e.g., generators and transmission lines, and cyber components, e.g., control

software, communication links, FACTS devices, and sensors. Reliability

quantifies the likelihood of a system to function (or fail) as specified, under

given conditions, over a given duration [27]. It takes a binary view of a

system, were the only states possible are “functional” and “failed.” It also

includes the maintainability of the systems and its constituent components

over time [28–49]. As such, this metric is of limited use in evaluating the

system after a failure occurs [50,51].

A quantitative metric and concept useful to this end is “Resilience”,

defined as the ability of a system to bounce back from a failure [52]. Recovery

does not imply the perfect restoration of the system’s functionality; but

instead implies that the system has returned to a state where it is considered

functional [25]. Reference Figure 1.1 shows different operating states a

power system may experience [53–55].

• Normal State: In this state, the system parameters such as voltage,

frequency, current, etc. are within the normal and desired range of

operation and the energy supply meets the demand. Event a component

fails, the system will be able to meet the demand with all operational

variables within the desirable thresholds.

• Alert State: In this state, all system parameters are within the accept-

able range but very close to their limits. In case of a failure in one

system element, the generation and demand will be still in balance;

however, some operational variables may be violated.

• Emergency State: In this state, some system parameters are outside

3



NORMAL

ALERT

Inequality constraints violated
EMERGENCY

Equality constraints violated
RESTORATIVE

Preventive Control

All constraints violated
EXTREMIS

Restarts
Load Pickup

Emergency
Control

Resynchronization

Figure 1.1: Power System Operating States [1]

their acceptable range. This may lead to system disintegration if a

failure occurs in the system.

• Extremis State: In this state, partial or system-wide black-out may

occur. That is the generation and demand are not in balance.

• Restorative State: In this state, the system goes into a process of

restoration by reconnecting system elements and re-synchronizing

generators to achieve the normal operating state.

Over the past couple of years, the GW Laboratory researchers have stud-

ied the resileince challenges that the power grid faces to a wide range of

threats and have proposed solutions for detection, verification, and mitiga-

tion in response. Interested readers can refer to [26,56–76].
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1.3 Challenges and Opportunities

Data analytics can improve resiliency in the dynamic grid [77]. Different

from the traditional power grids, modern grids are facing a high penetration

of distributed renewables more than ever before and a lot of research has

been devoted to capture the uncertainties in the power grid (both transmis-

sion and distribution) to harness their full potential in the operation and

control paradigms [54,55,78–83]. Meanwhile, as the number of consumers

connected to the grid increases, the loads become more active and control-

lable, and the storage devices also need to keep the pace with such evolution.

Additionally, new technologies like energy storage resources and electric

vehicles have been proliferated in recent years in power grids, making it a

heterogeneous ecosystem of physical and cyber infrastructures [72,84–92].

Access to high-fidelity measurements in power distribution systems is

particularly critical, and at the same time challenging due to the following

reasons [93]:

(i) The length of the power distribution lines is usually between 5 to 10

kilometers, resulting in the phase angle difference between the two

ends of the line to be commonly small (sometimes even lower than

0.1◦).

(ii) The proliferation and rushing arrival of renewables have increased the

complexity in the grid structure and the way electricity flows in the

network. A three-phase unbalance architectures are commonly seen

in power distribution systems, which could result in more than 30%

inter-harmonics and under 60dB noise conditions.

(iii) The fast switching characteristics of power electronic devices lead to

more electrical transients, further mandating the higher efficiency
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and dynamic tracking capability of the event detectors in the power

distribution sector.

While PMU measurements can be shared over communication networks

in real-time and collected at a centralized platform, called Phasor Data

Concentrators (PDC) [94] for further processing, the underlying network

models are mostly unavailable or incomplete. In most cases, PMU data is

hardly available in full (but limited) for research through the non-disclosure

agreements (NDAs) [95]. This makes it challenging to get the most out of the

synchronized measurements for fault detection and localization applications

when the real-time network topology is unknown or not accurate. The

problem of estimating the state of the power grid is usually divided into two

interrelated phases: the first is the state estimation in which the estimated

value is the voltage at all buses across the network, and the second is

topology processing and topology error detection, in which the breaker

status is used to track the current topology of the grid, and to detect and

correct the errors in the calculated topology. These two stages iterate, and

the combined process is known as a generalized state estimation [96]. With

the measurements received from the µPMUs and when judiciously integrated

with the topological processing of the visual images, the abnormal conditions

in the distribution network (e.g., fault location, fault detection, etc.) can

be better handled, further improving the network reliability, reducing the

economic losses, and mitigating the electrical safety concerns.

1.4 PMU Operating Principle

A Phasor Measurement Unit (PMU) is a device used to measure the

magnitude and phase angle of an electrical waveform, i.e., phasor quantity

(such as voltage or current) in the electricity grid using a common time
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source for synchronization [97]. Due to the fact that the time is synchronized

by the Global Positioning System (GPS), PMUs are able to capture real-time

electrical phasor quantities from multiple remote points on the power grid,

thereby providing a real-time snapshot of the entire grid making it possible

to approach wide-area monitoring, protection and control.

Additionally, PMUs are also used to measure the frequency in power grids.

A typical commercial PMU could report measurements with a high temporal

resolution in the order of 30-60 measurements per second. This helps

engineers in analyzing dynamic events in the grid which is not possible with

traditional SCADA measurements that generate one measurement every 2

or 4 seconds [98]. Hence, the synchronization ability makes PMU have a

critical role in protecting the electric systems from power outages, because

they could reduce the grid’s stress caused by imbalances in power supply

and demand.

A PMU could measure 50/60 Hz AC waveforms (voltages and currents)

typically at a rate of 48 samples per cycle making them effective at de-

tecting fluctuations in voltage or current at less than one cycle. Phasor

measurements from PMUs are constructed from cosine waves, that follow

the structure below [99]:

Acos(ωt +θ) (1.1)

Wherein, A is the scalar value, and usually stands for voltage or current

magnitude; θ is the phase angle offset from some defined starting position;

ω is the angular frequency of the waveform, that is most often described

as a constant of 2π50 Hz or 2π60 Hz. It is worth noting that when the

frequency does not oscillate around or near 50/60 Hz, PMUs are not able to

accurately reconstruct these waveforms, because the PMU is unable to fit

the waveform exactly when it is non-sinusoidal [99].
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Historically, only small numbers of PMUs have been used to monitor

transmission lines with acceptable errors of around 1%. While PMUs are

generally used on transmission systems, new research is being done on

the effectiveness of µPMUs for power distribution systems. That is because

the PMU can not only be a dedicated stand-alone sensor, but also its

functionality could be incorporated into a protective relay or other intelligent

electronics devices [100]. µPMUs can help decrease the error in the phase

angle measurements of the distribution line from ±1◦ to ±0.05◦, giving a

better representation of the true phase angle value [24].

1.5 Convolutional Neural Network

First of all, the differences among Artificial Intelligence (AI), Machine

Learning (ML) and Deep Learning (DL) need to be known. As Figure 1.2

shows below, Artificial Intelligence is a science field that aims at finding

solutions to complex problems like humans do. A decision mechanism that

is similar to a real human decision mechanism is tried to be modeled with

some algorithms. Machine learning is a sub-domain of artificial intelligence.

Machine learning uses mathematical and statistical ways to extract informa-

tion from data, and with that information, ML tries to guess the unknown.

Deep learning is a sub-domain of ML and tries to learn the data with the

artificial neural network approach [101,102].

In machine learning, artificial neural networks (ANNs) are abstractions

of biological neurons that can be trained to perform useful functions like

human brain [103]. A Convolutional Neural Network (CNN, or ConvNet) is a

class of deep neural networks, most commonly applied to analyzing visual

imagery since the 1980s [104]. They are also known as Shift Invariant or

Space Invariant Artificial Neural Networks (SIANN), based on their shared-
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Figure 1.2: Evolution of Artificial Intelligence [2]

weights architecture and translation invariance characteristics [105,106].

CNNs are regularized versions of multilayer perceptrons. CNNs are a

derivative of standard neural networks which are made up of neurons with

learnable weights and biases. Multilayer perceptrons usually mean fully

connected networks, that is, each neuron in one layer is connected to all

neurons in the next layer. The "fully-connectedness" of these networks

makes them prone to overfitting data. But instead of using fully connected

hidden layers in the regular neural network, the CNN introduces a special

network structure, which consists of convolution layers and pooling layers,

to address the challenges in the computer vision [107].

CNNs take a different approach towards regularization: they take ad-

vantage of the hierarchical pattern in data and assemble more complex

patterns using smaller and simpler patterns. Therefore, on the scale of

connectedness and complexity, CNNs are on the lower extremity [108]. Each

neuron receives several inputs, takes a weighted sum over them, passes it
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through an activation function and responds with an output. Typical ways

of regularization include adding some form of magnitude measurement of

weights to the loss function. Figure 1.3 shows an architecture of CNN. Con-

volution has the nice property of being translational invariant. Intuitively,

this means that each convolution filter represents a feature of interest (e.g

pixels in letters) and the CNN algorithm learns which features comprise the

resulting reference (i.e. alphabet) [107].

Figure 1.3: Convolutional Neural Network Architecture [3]

After convolution, the next step is to add an activation function. Usually,

it could be Rectified Linear Unit (ReLU). ReLU transform function only

activates a node if the input is above a certain quantity; the input is below

zero, the output is zero, but when the input rises above a certain threshold,

it has a linear relationship with the dependent variable. And the Pooling

Layer is to shrink the image stack into a smaller size. If the size of data

is still huge, the convolution and pooling steps are repeated. Finally, the

Fully-Connected Layer (FC) is to flatten all the shrunken layers and stack up

10



them into one, normally through the Softmax function [107]. At this point

in time, the training part for neural network is done, and further steps are

to predict and check the working of the classifier.

1.6 Thesis Outline

To overcome the limitations of the traditional mathematical models, this

thesis proposes a machine learning framework for online identification of

the distribution network topology. The neural network is trained using

µPMU measurements across the network—voltage, current magnitudes,

and their phase angles—and achieves the real-time network topology with

high accuracy even under noise and missing entries in PMU measurements.

The measured data are rearranged into 2-D matrices (heatmaps), where

the suggested CNN [69] takes them as the input. The performance of the

proposed algorithm is tested and verified in a radial three-phase unbalanced

distribution network.

The rest of the thesis is structured as follows: Chapter 2 provides a

literature review on the topic and discusses the design of the proposed

convolutional neural network framework. Chapter 3 implements the sug-

gested approach on the IEEE 34-Node Test Feeder in MATLAB/Simulink

platform and generates µPMU heatmaps under different system operating

scenarios. Chapter 4 introduces the proposed CNN framework, and how it is

implemented through Python. Section 5 presents the numerical studies and

the network topology identification results in power distribution systems

with noisy and missing measurements. Finally, the thesis is concluded in

Chapter 6.
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Chapter 2: Literature Review

2.1 Introduction

With the increasing growth of distributed energy resources in the power

grid, more observability and controllability will be needed to accurately

monitor the power flows and the unfolding conditions. In 1893, Charles

Proteus Steinmetz presented a paper on simplified mathematical description

of the waveforms of alternating current electricity. Steinmetz called his

representation a phasor [109]. With the invention of PMU in 1988 by Dr.

Arun G. Phadke and Dr. James S. Thorp at Virginia Tech, Steinmetz’s

technique of phasor calculation evolved into the calculation of real-time

phasor measurements that are synchronized to an absolute time reference

provided by the Global Positioning System (GPS). People therefore refer to

synchronized phasor measurements as synchrophasors. Early prototypes

of the PMU were built at Virginia Tech, and Macrodyne built the first PMU

(model 1690) in 1992 [110].

In order to enhance the power grid resilience, grid operators need re-

liable and continuous monitoring of distributed energy resources (DERs).

The concept of distribution automation was proposed to be used as the

business-to-people (B2P) intelligent control between the power generation

and consumer terminals, and help automatically realizing a sustainable

grid operation [111].

On the other hand, as Figure 1.2 shows in Chapter 1, deep learning

is a subset of AI and machine learning that uses multi-layered artificial

neural networks to deliver state-of-the-art accuracy in tasks such as ob-

ject detection, speech recognition, language translation and others. Deep
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learning differs from traditional machine learning techniques in that they

can automatically learn representations from data such as images, video or

text, without introducing hand-coded rules or human domain knowledge.

Their highly flexible architectures can learn directly from raw data and can

increase their predictive accuracy when provided with more data.

Figure 2.1 is a two-dimension scheme for classification of deep learning

based on recommender system; the left part illustrates the first dimension,

and the right part illustrates the second dimension [4].

Figure 2.1: Two-dimension Deep Learning Framework based on Recom-
mender System [4]

It is obvious that in the first dimension, Multilayer Perceptron (MLP),

Restricted Boltzmann Machines (RBM), Autoencoder (AE), Convolutional

Neural Network (CNN), Recurrent Neural Network (RNN), Deep Structured

Semantic Model (DSSM), Neural Autoregressive Distribution Estimation
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(NADE), and Generative Adversarial Network (GAN) all belong to Deep Learn-

ing (DL) techniques.

Within the family of neural networks, and to train the model with a

grid-like topology such as images, deep CNN has been one of the greatest

breakthroughs [112,113]. As it shows in Figure 2.2, the CNN structure

consists of a convolutional layer, a pooling layer, and fully connected layers

(FCs). When applied to single-label (multi-class) image classification, CNN

can handle well-aligned images very well [114].

Figure 2.2: A Two-Convolution-Layer CNN Structure

By definition, CNNs are simply neural networks that use convolution

in place of the FC layer in that least one of their layers [115]. In general,

the implementation of the convolution is actually the cross-correlation

assessment and defined by

sp(m,n) = ∑
u

∑
v

∑
w

Iu(m+ v,n+w)K p(v,w), (2.1)
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where sp(m,n) is the output of the convolutional layer at position (m,n) and

p-th channel, Iu is the u-th channel of the data volume, and K p is the

p-th convolutional kernel. A nonlinear activation function is applied to the

output of the convolution output, and the final activations of neurons in a

convolutional layer are

Il = σ(s), (2.2)

where Il represents the output volume of the l-th layer, and σ(·) represents

the non-linearity of the neurons. By stacking the convolutional layers, the

abstraction capacity of the network increases [116].

The representations (outputs) of the last convolutional (Conv) layer are

expanded to vectors and processed by the general fully-connected layers,

which transform the representations with more nonlinearities and into

spaces with different (higher or lower) dimensions. The final layer of a CNN

usually reduces the dimensionality of the representations to the number of

the classes; cross-entropy [117] is then employed to measure the “goodness”

of the classification (Kullback-Leibler divergence between the predicted

distribution and the target distribution). Finally, gradients of the cross-

entropy loss function with respect to the parameters in the CNN are used

to train the CNN by back-propagation.

2.2 State-of-the-Art Research

The main challenge in DER monitoring at all times is that it is difficult

to obtain the real-time grid topology. A variety of research methods have

been proposed to identify the power system topology from synchrophasor

measurements, and several methods of external network modeling were

discussed to implement online security analyses [118]. Mathematically,
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grid topology identification could be realized through voltage estimation

across the grid [119], but the accuracy goes low when this method is applied

on the topology of a frequency changing distribution grid or with limited

µPMU sensors [120–123]. In [124], a Jacobian-based equivalent approach

is used for detecting the electrical network topology changes in the external

system. An approach which is a hybrid of power flow and state estimation

is discussed in [125]. A method to capture the network topology changes

based on an extended Ward equivalent is discussed in [126]. H. Singh, et

al. There are also distribution network specific methods based on various

assumption topologies, [127] introduced a technique that estimates the

status of a suspect lines as part of the state estimation process. Focused on

the transmission systems with inaccurate parameters, an offline REI (radial,

equivalent, independent) equivalent [128] is suggested to be built from a

base-case condition and to be updated using online data [129]. In order

to improve the accuracy of the topology detection process, the problem of

using telemetry data to correct and adjust the transmission parameters are

considered in [130]. The network topology estimation accuracy could vary

greatly depending on the information injections at the non-PMU buses. If

the injections at the non-PMU buses are zero, the estimates will be the true

equivalent at the PMU buses. In [131], a least-square “model-free” approach

is proposed to estimate the equivalent power system topology by calculating

the load variations with limited observation at each bus. In [132], a method

for visualizing PMU data by reducing the system to an equivalent model at

the PMU buses is discussed, which assumes the electrical network topology

is known; an equivalent procedure is performed to reduce the network to

a Ward type equivalent at the PMU buses. Another useful visualization

technique has been done by biplots introduced in [133]. S. V. Wiel, et al. [96]
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developed a greedy search algorithm to estimate the current topology of

a power grid from phasor measurements. It studies the PMU placement

at strategic points in a distribution system [134] to achieve a promising

sensitivity to single-line outages. G. Cavraro, et al. [135] proposed a novel

method for topology detection in distribution networks called the Time-Series

Signature Verification for Topology Detection (TSV-Top). This approach relies

on measurement time series from PMUs and performs the projection of

actual voltage phasor patterns onto a library of signals associated with

possible topology transitions of a given distribution network [136].

The above literature review revealed that most of the power grid topol-

ogy identification and estimation tools are based on mathematical models,

the majority of them assuming an electrical network topology first and

then measure the collected data to compare the features and determine

the accuracy of the previously assumed network topology. Such strate-

gies are time-consuming, less accurate, and with practical limitations. On

the contrary, there are more recent strategies leveraging machine learning

advancements. Instead of accurately modeling the system, recent works

have focused on training artificial neural networks to automatically recog-

nize the electrical network topology and solve complex problems. In [137]

and [138], two learning algorithms based on nodal voltage graphical models

are introduced which can estimate the network topology under varying topo-

logical restrictions. D. Deka, et al. [139] developed a learning framework to

reconstruct the radial operational structure of the distribution grid from

synchronized voltage measurements across the network subject to the exoge-

nous fluctuations in nodal power consumption. For the economic purposes,

P. K. Ghosh, et al. [140] proposed a novel approach for complete system

and fault observability using a minimum number of strategically-placed
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PMUs. Reference [141] proposed a data-driven approach based on sensor

measurements that identifies DERs’ connectivity by converting topology

identification problems to probability distance minimization problems via

the Kullback-Leibler (KL) divergence metric.

2.3 Proposed Framework

In this thesis, the proposed CNN for the heatmap classification in the

IEEE 34-Node Test Feeder has the following architecture: Input(33×12)–

Conv(32, 5×3)–Conv(32, 3×3)–FC(100)–FC(9). Note that the axes of the

input heatmap are with different units; Therefore, narrow kernel has been

chosen in the first Conv layer which could cover the 3-phase data in each

group, and the stride of the convolution operation in the first layer is (3,

2)—other Conv layers’ strides are (1, 1). This design processes the data

in each group first, then combines the information of each group in the

second Conv layer and the FC layer. Batch normalization [142] is used in

each Conv layer. Dropout [143] is adopted in the last Conv layer and the FC

layer to prevent over-fitting. ReLU was chosen as the nonlinearities in the

neural net.

The proposed framework for online power system topology identification

is illustrated in Figure 2.3 . The µPMUs data is first used for offline training

of the pre-built CNN model. The trained model is then used for online

identification of the power distribution network topology.
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Figure 2.3: The proposed framework for power system online topology identification19



Chapter 3: Simulation on MATLAB

3.1 Background

MATLAB is a multi-paradigm numerical computing environment and

proprietary programming language developed by MathWorks. MATLAB

allows matrix manipulations, plotting of functions and data, implementation

of algorithms, creation of user interfaces, and interfacing with programs

written in other languages [144]. Simulink is a MATLAB-based graphical

programming environment for modeling, simulating and analyzing multi-

domain dynamical systems. Its primary interface is a graphical block

diagramming tool and a customizable set of block libraries. It offers tight

integration with the rest of the MATLAB environment and can either drive

MATLAB or be scripted from it. Simulink is widely used in automatic control

and digital signal processing for multi-domain simulations and model-based

designs [145–147].

3.2 Scenario Generation

To run a model in MATLAB Simulink, we select the IEEE 34-Bus System

as an example. This radial power distribution system is an actual feeder

located in Arizona, the detailed information of which is provided in the

Appendix A and its structure is illustrated in Figure A.1. The feeder’s

nominal voltage is 24.9 kV and is characterized by:

(1) Very long and lightly loaded overhead distribution lines

(2) Two in-line regulators required to maintain a good voltage profile across

the network
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Figure 3.1: IEEE 34-Node Test Feeder with Colored Phasing.

(3) A wye-wye grounded transformer reducing the voltage to 4.16 kV for a

short section of the feeder

(4) 24 unbalanced loading with both “spot” and “distributed” loads. Dis-

tributed loads are assumed to be evenly distributed on the distribution

line.

(5) Shunt capacitors

Except for the power generator at node 800, we can see there is one

transformer located between node 832 and node 888. And there are two

regulators located between node 814 to node 850, and between node 852 to

node 832, respectively. From the information list above, this radial feeder

contains unbalanced phases. In order to show it more intuitively, the next

step is to mark branches with different status in different colors, as shown

in Figure 3.1.

Different colors are here used to mark the phasing status, e.g., pink is

used to mark the line 800-812 as BACN, meaning that it is a three-phase
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four-wire segment in the distribution grid, while line 808-810 is one-phase

two-wire segment. Finally, to generate several scenarios, I added some

details into the structure of the network as shown in Figure 3.2.
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Figure 3.2: IEEE 34-Node Test Feeder Scenarios.

To gain a full observation of the IEEE 34-node test feeder as shown

in Figure 3.2, I set 33 µPMUs on each node expect node 800 (substation

bus). In order to make the scenario more clear, I use the Table 3.2 here to

mark the specific parameters involved. Table 3.1 shows the node a µPMU is

connected to and the measurement captured at the measurement points.

Table 3.1: Full observation µPMU Components

µPMU 802 820 832 848
(Voltage & angle, Current & angle) 806 822 888 860

(3×2, 3×2) if three-phase 808 824 890 836
(6, 6) if three-phase 810 826 858 840

812 828 864 862
814 830 834 838
850 854 842
816 856 844
818 852 846

As shown in Table 3.2, in order to generate different electrical network

topologies for the CNN training dataset, I also added 5 breakers to be able
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to change the structure of the feeder by switching the breaker on and off.

Additionally, to generate more scenarios under one topology, here I marked

5 loads, so the µPMU data could be varying under different realizations of

the load demand.

Table 3.2: Network Model Specifications and Variables

Breaker
Name SW∗1 SW2 SW3 SW4 SW5

Breaker
Location 850-816 818-820 832-858 834-842 836-862

Load
Name Load1† Load2† Load3† Load4 Load5

Location 824-828 820-822 858-834 844 840
* SW: Breaker
† : Distributed load

In this table, Load 1, 824-828 means it is a distributed load; Load 4,

844 means it is a spot load. It is known that I can generate different

µPMU data through adjusting the impedance of the loads. But in MATLAB

Simulink, the block parameter of Three-Phase Series RLC Load does not own

the "impedance" parameter label, the panel is shown below in Figure 3.3.

Accordingly, I turned to adjust active power, inductive reactive power, and

capacitive reactive power of the load instead.

Table 3.3 shows the result of the final generated scenarios. Take Topology

2 as an example, where SW 1 was 1, SW 2 and 3 were 0, which means

when Breaker 850-816 was closed (status=1), Breaker 818-820 and Breaker

832-858 were opened (status=0), and the entire branch behind 858 was

off-line. The red 0 stands for assuming all the rest be opened for reducing

the unnecessary calculations. Because all four loads expect Load 1 were

off-line, the marked 0 means it is meaningless to discuss the load change.

Due to the fact that the network Topology 5 is too similar with Topology 4
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Figure 3.3: Three-Phase Series RLC Load Block Parameter Panel.

Table 3.3: Generated Network Topology Scenarios

Topology SW1 SW2 SW3 SW4 SW5 Load1 Load2 Load3 Load4 Load5
1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 1 0 0 0 0
3 1 1 0 0 0 1 1 0 0 0
4 1 0 1 0 0 1 0 1 0 1
5 1 0 1 0 1 1 0 1 0 1
6 1 0 1 1 0 1 0 1 1 1
7 1 0 1 1 1 1 0 1 1 1
8 1 1 1 0 0 1 1 1 0 1
9 1 1 1 0 1 1 1 1 0 1
10 1 1 1 1 0 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1

in terms of µPMU data, and Topology 1 and 2 could produce too little data

which violates the balance in machine learning training data [148], keen

considerations were taken in generating different load scenarios. Here we

focus on 8 different topology scenarios that marked with gray blocks.

Table 3.4 shows the general operating status configuration of the 8
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simulated network topologies, and the scenario number respectively.

Table 3.4: Network Topology Realizations with the Corresponding Number
of Generated Scenarios

Topology SW1 SW2 SW3 SW4 SW5 Number of
Scenarios

1 1 1 0 0 0 1600
2 1 0 1 0 0 2197
3 1 0 1 1 0 2401
4 1 0 1 1 1 2401
5 1 1 1 0 0 2401
6 1 1 1 0 1 2401
7 1 1 1 1 0 3125
8 1 1 1 1 1 3125

Let the load change amplitude be uniformly distributed between 95% to

105% of the rated demand at each load point. In Topology 1, only Load 1

and Load 2 are served through the connected distribution line and it is not

necessary to adjust the remaining three load points for scenario generation.

Assuming each load has 40 possible amplitudes in the constrained range

above, the total number of scenarios is found 402 in this case, i.e., 1600.

Under the network Topology 8, all five loads are being served in the distri-

bution grid, and as each one is characterized with 5 possible amplitudes for

the training process, there are 55, i.e., 3125, number of scenarios generated.

The total number of generated scenarios that contribute to the training

dataset is found 19651.

Figure 3.4 shows all topologies that I used to to train the CNN. To

summarize, I generated 19651 scenarios within 8 topologies, and there are

33 µPMUs in the whole test feeder. The Figure 3.5 is an example for a 33

by 12 matrix that was generated under one scenario; The program I used

to generate µPMU data through MATLAB is attached in Appendix B.

As the screenshot of EXCEL shows above, columns A, B, and C stand
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Figure 3.4: All Studied Network Topologies

26



Figure 3.5: Example of a µPMU Data.
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for the three-phase normalized voltage values (divided by nominal voltage),

columns D, E, and F stand for the voltage phase angle radian values divided

by π. And the last 6 columns G to L are the same as the previous 6 columns

but the voltage variables are replaced with the current. The rows 1 to 33

represent the 33 µPMUs. So all numbers in this matrix is ranged between

1.05 to -1.05, which are suitable for convolution calculations.

3.3 Simulink

To run the entire test feeder in MATLAB, the most important step is to

model it in Simulink. Figure 3.6 shows the entire structure of the 34-Node

Test Feeder.
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Figure 3.6: The structure of 34-Node Test Feeder in Simulink
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3.3.1 Environment Block

Figure 3.7: PSB option menu block

First, a "PSB option menu" block named "powergui" is added here, as

Figure 3.7 shows. This block is an environment block for Simscape Electrical

Specialized Power Systems models [149]. We choose the Simulation type as

"Phasor", and set the Frequency to 60 Hz.

3.3.2 Power Source Block

From Appendix A, the feeder’s nominal voltage is 24.9 kV, which means

the phase-to-phase nominal voltage is 24900 V. We then add a Three-Phase

Source block from Simscape toolbox as the main voltage source shown

below.

We set the configuration as "Yg" which means it is Y-connected to the

ground. And select the specified internal voltages for each phase. For

line-to-neutral voltage, it should be the phase-to-phase nominal voltage

divided by
√

3 and multiplied by an efficiency factor (EF).

Vline-to-neutral =
Vphase-to-phase nominal√

3
·EF (3.1)

For short lines, the efficiency factor is 1.05 meaning that there should

be 5% used to compensate the voltage drop inside the winding when the
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Figure 3.8: The Three-Phase Source block
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transformer is fully loaded. And for long lines, the first-end voltage should

be 10% higher than the rated voltage of the line; that means the efficiency

factor is 1.1, because there should be another 5% used to compensate the

voltage loss of the long line. The frequency is the same as the "powergui" as

60 Hz. And the phase angles of the line-to-neutral voltages is 0◦, −120◦, and

120◦ because there is no lagging or leading for this test network. Second,

we use the Load Flow Bus blocks to simulate spots, and use Three-Phase

VI Measurement blocks to simulate µPMUs.

3.3.3 µPMU Block

As shown in Figure 3.9, µPMU 806 is connected to a three-phase dis-

tributed load; so the "connectors" parameter label in the Load Flow Bus

block should be "ABC". The "Base voltage" is 24.9 kV/
√

3. And the "Swing

bus or PV bus voltage" and the "Swing bus voltage angle" should be ac-

cording to the reference in Appendix A.4, where the values are shown in

Appendix A.4.2.

In the Three-Phase VI Measurement block, the "voltage measurement"

should be "phase-to-ground". To measure phase-to-ground voltages in per

unit, the block converts the measured voltages based on the peak value of

the nominal phase-to-ground voltage as follows:

Vabc(pu) =
Vphase-to-ground

Vbase
, (3.2)

where

Vbase =
Vnom√

3
·
√

2 (3.3)

And I set the "Base power" here to 1.5e6 VA, so that the output could be

32



Figure 3.9: The µPMU Block in Simulink

converted into per-unit. The "Nominal voltage used for pu measurement" is

24.9 kV. And finally, I choose the "Output signals" as "Magnitude-Angle" to

output the magnitudes and angles of the measured voltages and currents.

Here I labeled each µPMU with voltage signal labels and current signal

labels, so that all the results could be shown in "Data Inspector" after

simulations.

3.3.4 Distribution Line Block

For distribution lines, we use the "Distributed Parameters Line" block

from Simscape toolbox, as shown in Figure 3.10, to simulate the resistance

of the distribution lines. As it shows, the distribution line 806-808 is a three-

phase line, so the "Number of phases" should be 3. The "Frequency" should

be the same as the main bus, 60 Hz. As for the "Resistance per unit length",

"Inductance per unit length", and "Capacitance per unit length" blanks, they
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should be 3 by 3 matrices for this three-phase segment. In "[r1 r0 r0m]", r1

means positive resistances, r0 means zero-sequence resistances, and

r0m means zero-sequence mutual resistances. The rest symbols could be

the same with "l" standing for inductance and "c" standing for capacitance.

Figure 3.10: Distributed Parameter Line Block in Simulink

In Table A.2, the line 806-808 owns the "Config." of 300, and from

Appendix A.3, it is known that for "300 Config." lines:

R_300′ =


1.3368 0.2101 0.2130

0.2101 1.3238 0.2066

0.2130 0.2066 1.3294

 (3.4)

X_300′ =


1.3343 0.5779 0.5015

0.5779 1.3569 0.4591

0.5015 0.4591 1.3471

 (3.5)
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B_300′ =


5.3350 −1.5313 −0.9943

−1.5313 5.0979 −0.6212

−0.9943 −0.6212 4.8880

 (3.6)

We set the conversion factors as tabulated in Table 3.5:

Table 3.5: Convert Factors

miles to kilometers mi2km 1.60934
feet to kilometers ft2km 0.0003048
microsiemens to Farads ms2F (1e−6)/(2 ·π ·60)

Finally, the three parameters in Figure 3.10 are converted to US custom-

ary units as follows:

R_300 =
R_300′

mi2km
, (3.7)

L_300 =
X_300′

mi2km ·2 ·π ·60
, (3.8)

C_300 =
B_300′

mi2km ·ms2F
(3.9)

3.3.5 Spot Load Block

There are 6 spot loads in IEEE 34-Node Test Feeder according to Ta-

ble A.4, knowing that the load model for load 848 is "D-PQ", and V_848 =

[1.0311.0291.031] ·
√

3. As Figure 3.11 shows, I here use the "Three-Phase

Series RLC Load" block to represent the spot loads.

For spot load 848, the "Active power" Pa_848 = [20 20 20] kW and

"Inductive reactive power" Pp_848 = [16 16 16] kVAr are set. The "Capacitive

reactive power"is set to Pn_848 = [150 150 150] kVAr according to Table A.6.
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Figure 3.11: Spot Load Block in Simulink

Hence, the "Configuration" should be "Delta", and "Nominal phase-to-phase

voltage" should be V_848 · 24.9√
3
kV. The "Nominal frequency" remains the same,

i.e., 60 Hz. For "Measurements", we select "Branch voltages and currents" to

measure the three voltages and the three currents of the Three-Phase Series

RLC Load block. And for "Load Flow", we choose "constant PQ", because

"D-PQ" means the active power P and reactive power Q are kept constant

and equal to the values specified on the Parameters tab of the block dialog

box.

Notice that for some spot loads (e.g., load 844 and load 848 according to

Table A.6 in IEEE 34-Node Test Feeder), the shunt capacitor is separated,

so the parameter "Capacitive reactive power" should be set in another RLC

load block with Pa_848 and Pa_848 be [0 0 0], and "Nominal phase-to-phase

voltage" be [111] · 24.9√
3
kV, and "Measurements" be "None", and "Load Flow" be

"constant Z".
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3.3.6 Distributed Load Block

There are 19 distributed loads in IEEE 34-Node Test Feeder according

to Table A.5, knowing that the load model for load 828-830 is "Y-PQ", and

V_828-830= [1.0071.0151.011] kV according to Appendix A.4.4. The V_828-

830 should be multiplied by
√

3 if it is Delta-connected. As Figure 3.12

shows, we here use the "Three-Phase Series RLC Load" block to represent

the distributed loads.

Figure 3.12: Distributed Load Block in Simulink

In order to balance the distributed load, we here let the load 828-830

be divided into 2 equivalent loads and hung on both sides of the distri-

bution line 828-830. For one equivalent load, the "Configuration" is "Y

(grounded)" because it is Y-connected. The "Nominal phase-to-phase volt-

age" is V_828-830 · 24.9√
3
kV. The "Nominal frequency" is the same as 60 Hz.

For distributed load 828-830, the "Active power" Pa_828-830 = [7 0 0] kW,

"Inductive reactive power" Pp_828-830 = [3 0 0] kVAr, and "Capacitive re-

active power" Pn_828-830 = [0 0 0] kVAr are set, so the Pp_828-830 does

not need to be divided by 2. But in order to avoid errors in the simulation

process, it is better to set all zeros into 1e-6. We set the "Measurements" be
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"None", and "Load Flow" be "constant PQ".

3.3.7 Subsystem Block

As shown in Figure 3.6, the green square marked "Power-Flow Results"

in the upper left corner collects all the data measured by the µPMUs of this

test feeder, that is the Subsystem block.

Figure 3.13: Results Subsystem Block in Simulink

The right hand side of Figure 3.13 shows a part of this Subsystem

representing which types of µPMU data are collected. For example, for

µPMU 812, the needed data are the voltage and currents; so two "From"

blocks are linked with "V812" and "I812" where the labels in Figure 3.9

present the voltage and current captured by µPMU 812.
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Chapter 4: Machine Learning with Python

4.1 Introduction

For the general loopy power grids, there may be multiple paths between

two nodes. If power distribution grids are featured with minimum cycle

length greater than three, the nodal voltages are sufficient for efficient topol-

ogy estimation without additional assumptions on the system parameters.

In contrast, the detection of line failures or status change using nodal volt-

ages does not require any structural assumption on the network [137,138].

As for the case of the IEEE 34-Node Test Feeder, the minimum cycle length

in a radial graph is considered to be infinite as it has no cycles by definition.

Hence, using nodal µPMU measurements, such as voltage and current

phasors, real-time network topology estimation on the IEEE 34-node feeder

system is effectively viable.

The problem of detecting the network topology change can recast as a

classification problem based on the heatmaps which are obtained by the

µPMUs measurements. The conventional classification approaches often

involve manually designed features like thresholds and signatures in each

scenario. However, these approaches require the human expertise and

the type of topology it can detect would be limited. E.g., a threshold may

be suitable for a certain topology, but if one node becomes offline in the

electrical network, the threshold would not work anymore. This thesis

proposed an artificial neural network platform that can learn the features

(representations) of the data automatically.
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4.2 The Proposed Framework

As shown in Figure 2.3, the µPMUs data collected from each bus in the

distribution network is first used for offline training of the pre-built CNN

model. The trained model is then used for online identification of the power

distribution network topology. A flowchart of the proposed CNN is shown

in Figure 4.1, where the first step is to collect µPMU data and normalize

them into per-units. Such data with their corresponding topologies are

then inputted into the neural network, and the trained network learns to

identify distribution grid topology with µPMU measurements. The CNN used

cross-entropy as the loss function. Finally, additional µPMU measurements

beyond the training set were used to verify the model accuracy.

Figure 4.1: Proposed CNN Working Flowchart [5]

This CNN architecture will be used as a building block in the proposed

framework that identifies the power distribution network topology in real-

time. Upon simulating each scenario in MATLAB Simulink environment,

the resulting µPMU data will characterize a 33 by 12 heatmap matrix

which contains three-phase voltage, three-phase voltage angle, three-phase

current, and three-phase current angles. For the nodal measurements that
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contain single-phase or two-phase data, we let the remaining entries be zero.

Then we line up the data in a heatmap format into four groups, process the

data in each group individually, and finally integrate the information in each

group together. A partially connected neural network is dedicated to the

processing of these groups of heatmaps. In practice, a partially connected

neural network is equivalent to a CNN. I design a CNN by carefully selecting

the kernels in the first layer. As mentioned before, simulation of each

scenario results in a heatmap (see Figure 4.2 for a heatmap example); these

heatmaps are used as the inputs to the proposed CNN.

Figure 4.2: A Heatmap Example of the Generated µPMU Measurement Data
Sample.

Comparing with the Figure 3.5, columns Va, Vb and Vc stand for the three-

phase voltages; columns θVa, θVb and θVc stand for the three-phase voltage

angles; columns Ia, Ib and Ic stand for the three-phase currents; columns

θIa, θIb and θIc stand for the three-phase current angles.
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4.3 Programming in Pycharm

PyCharm is an integrated development environment (IDE) used in com-

puter programming, specifically for the Python language. It is developed by

the Czech company JetBrains [150]. The program used for CNN framework

is available in Appendix C. CUDA is a parallel computing platform and

application programming interface model created by Nvidia [151]. It allows

software developers and software engineers to use a CUDA-enabled graph-

ics processing unit for general purpose processing – an approach termed

GPGPU [152]. We here used the "Cuda" function in the main program to

accelerate the calculation operations. Due to the fact that the size of the

IEEE 34-Node Test Feeder is not that huge, we here used the two layer

neural network, as in Figure 2.2, to train the framework (see the program

in Appendix C.3). The proposed framework also contains a new function

that accounts for loading the heatmap data from the training dataset in

Appendix C.4. The program in Appendix C.1 sorts the µPMU data into

three folders, "Train", "Test", and "Val", under all the scenarios mentioned

in Section 3.2. After calculating the mean and standard deviation through

the program in Appendix C.2, the training dataset were loaded into the

neural network. The "optimizer" is here selected to be "Adam" [153] and the

activation function is ReLU.
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Chapter 5: Numerical Case Study

5.1 Experiments Outline

As Figure 2.3 shows, the proposed deep learning framework is consisted

of three parts. The first part is gathering µPMU data, the second part is

training the CNN offline, and the third part is to identify the power grid

topology by inputting real-time data into the trained neural network. In

order to verify the practicality of the proposed framework, we here designed

5 experiments to verify the reliability of the framework:

(i) Train a neural network based on the proposed deep learning framework

under full network observation, where the training data were collected

from each and every node in the grid, and test the accuracy of the power

grid topology identification using this network under the scenarios in

the presence of interfered data, e.g., noisy data or missing data.

(ii) Train three neural networks based on the proposed deep learning

framework under full network observation with interfered training

data, test the accuracy of power grid topology estimation using the

previously trained networks under the scenarios of inputting abnormal

data beyond the training dataset.

(iii) Train several neural networks based on the proposed deep learning

framework under partially observable network conditions with fewer

number of installed µPMU sensors, in which the input heatmaps in

the training dataset would miss one or more rows of data. Then test

the accuracy of power grid topology identification using the previously

trained networks.
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(iv) For randomly missing µPMU measurements, train several neural net-

works based on the proposed deep learning framework under the

sensor-rich scenarios, which is partial observation with two-third sen-

sors, and with interfered training data. Then test the accuracy of power

grid topology identification using the previously trained networks.

(v) For economic purposes, train several neural networks based on the

proposed deep learning framework under the sensor-less scenario, with

partial observability achieved through one-third sensors, in which the

missing input data were manually selected. Then test the accuracy of

power grid topology identification using the previously trained networks,

find the minimum number of the µPMU sensor that could efficiently

observe the whole grid.

5.2 Data Generation and Preprocessing

In the case of IEEE 34-Node Test Feeder, the obtained data are 33 by 12

heatmaps which stand for 33 µPMUs data points (rows) and are consisted

of the voltage, current, and phase angle information (columns) from the

µPMU measurements. These µPMU measurements are obtained under full

observations of all nodes in the power network as mentioned in Section 3.2

and generated in the MATLAB environment. The entire test feeder was

built in Simulink, and all block parameters were set according to the data

provided in Appendix A [6].

5.2.1 Parallel Simulation

In order to ease the simulation complexity and computational burden,

we here used a technique of parallel simulation operation in Simulink [154],
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which could run simulations of multiple scenarios simultaneously. As the

progeam shows in Appendix B.2, the "parsim" function is used for parallel

operations. The entry "simu_number=5" means that 5 cores of the computer

CPU (central processing unit) are assigned as "worker", so that the system

could run 5 scenarios in each simulation time.

5.2.2 Data Classification

After the µPMU measurements were captured, all scenarios should be

classified into three folders: training dataset, testing dataset, and validation

dataset, where each folder contains 8 topologies as presented in Table 3.3.

In order to facilitate the CNN computation, the columns of the heatmaps

(such as per-unit voltage and current values) were normalized through a

zero-mean and unity variance distribution. We randomly separate 80% of

the total simulation outputs as the training dataset, 10% for testing dataset,

and 10% for validation dataset.

5.3 Results Analysis

5.3.1 Full Network Observation

First, a full observation in the network is studied wehre the data is

collected at all 33 µPMU data in the test feeder as shown in Table 3.1. In

order to test the performance of the proposed framework, the experiments

were conducted that are closer to the realistic situations. In the first group

experiments, different interferences were applied in the dataset. The inter-

ferences include both the noise and the missing data. The accuracy of the

proposed topology identification framework in the conducted experiments

is shown in Table 5.1. Wherein, one epoch of training means every sample
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in the training dataset is used in the training of the CNN once, and the

SNR refers to the Signal-to-Noise Ratio. One can see that as the number of

training epochs increases, the accuracy also increases.

The "Validation Accuracy" in Table 5.1 corresponds to the condition

when the neural network was trained by the training dataset, and the

accuracy of identifying the electrical network topology is assessed using

the validation dataset which is included in the training dataset; and the

"Prediction Accuracy" refers to the condition when the neural network was

trained by the testing dataset, and the accuracy of the network topology

identification is assessed using the testing dataset which is excluded in the

training dataset.

5.3.1.1 Topology Identification Analysis

Table 5.1: The identification accuracy of the interfered dataset under full
observation

Test Scenarios Interference
SNR (dB)

Number
of Epochs

Best Validation
Accuracy (%)

Best Prediction
Accuracy (%)

Full Measurement 10 5 98.81 98.72
Full Measurement 10 10 98.81 98.81
Full Measurement 10 20 99.86 99.95
Full Measurement 20 20 100 100
Full Measurement 20-50∗ 20 100 100
Missing One Data - 20 100 100
Missing Two Data - 20 99.91 99.95
Missing One Data 20 20 100 99.95
Missing Two Data 20 20 100 99.95
Missing One Data 10 20 99.95 99.82
Missing Two Data 10 20 98.86 98.99
Missing Two Data 20-50∗ 20 100 100

*: the intensity of SNR is randomly selected in the range and applied on
each data sample.

As one can see, the accuracy of the proposed electrical network topology

identification scheme was never found lower than 95%. This is because for

one epoch training, all the testing data were included in the training dataset.
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For example, for full measurement containing 10dB SNR, and when the

number of epochs is 20, the neural network was trained by the training

dataset that contained 10dB SNR, leading to an identification accuracy

of 99.9%. Hence, the prediction accuracy cloud be achieved high as long

as the neural network was trained well. In this situation, the prediction

is actually called identification, because all scenarios are already known,

taking advantage of a full observation. Additionally, when all measurements

are available and the SNR is greater then 20dB, the proposed CNN can

identify the system topology very accurately (the smaller the SNR, the greater

the noise). Moreover, for well trained neural network, the more missing data

in the training dataset, the greater the positive impact on the accuracy of the

prediction engine.

5.3.1.2 Prediction Analysis

In the second group of experiments, the training and testing data are

interfered with at different levels. The three "Training Data" in the first

row represent three CNNs, which were trained by applying the datasets

(i) containing 10dB SNR, (ii) containing one missing data with 10dB SNR,

and (iii) containing two missing data with 10dB SNR respectively. The first

column contains three situations which means the models are individually

tested each with 800 samples (i.e., 100 µPMU data were generated for

each network topology) but with 40dB SNR. The electrical network topology

identification accuracy is shown in Table 5.2.

Note that in order to conduct the tests closer to the realistic situations,

when generating the training dataset, the data are interfered by taking out

the missing entries first, then adding noise; On the contrary, when testing

the model, the data were added with noise first and then the missing entries
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Table 5.2: The identification accuracy (%) by training and testing the CNN
in different extents of interferences

Test Data
Training Data 10dB SNR Missing One Data Missing Two Data

and 10dB SNR and 10dB SNR

40dB SNR 71.88 80.75 94.00

Missing One Data 72.75 80.63 93.6240dB SNR
Missing Two Data 72.13 82.13 94.5040dB SNR

were studied. The test data were beyond the training dataset, which means

that the neural network identifies the system topology by estimating from the

unknown inputs. For example, for µPMU data which contained 40dB SNR,

using the network which was trained well by the dataset containing 10dB

SNR to estimate the system topology will result in an overall identification

accuracy of 71.88%.

All these 9 cases achieve the accuracy greater than 70%. One can see

that using the same testing data, if the training data has imperfections

such as missing, and/or outlier values, interferences, but under a certain

level, the trained neural network can provide more accurate results. This

is because the imperfections or complications in the training dataset can

make the neural network become more versatile, and thus, the trained

network would perform better. In all, the trained CNN under the greatest

level of interference achieves a satisfactory topology identification accuracy,

implying that the proposed CNN has a very good capacity of generalizing

the trained data to unseen inputs.

5.3.2 Missing µPMUs Observation

Table 5.1 shows that the proposed neural network framework could work

well under the presence of missing data and noises. Hence, the next step
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is to verify if the framework could also work well under missing µPMUs

instead of individual data.

5.3.2.1 Missing A Few µPMU Sensors

For missing one µPMU, that means a whole row of data in Figure 3.5

is missing, we here replaced the entries with zero to represent such cases.

Table 5.3 shows the identification accuracy under missing different numbers

of µPMU.

Table 5.3: The identification accuracy of the interfered dataset under missing
several µPMUs observations

Test Scenarios Number
of Epochs

Best Validation
Accuracy (%)

Best Prediction
Accuracy (%)

32 µPMU Sensors 20 98.13 98.44
31 µPMUs Sensors 20 99.68 99.67
30 µPMUs Sensors 20 99.91 99.86
29 µPMUs Sensors∗ 20 98.02 97.94
28 µPMUs Sensors∗ 20 99.32 99.31
27 µPMUs Sensors∗ 20 99.22 98.99
22 µPMUs Sensors∗ 20 98.36 98.31

*: the zeroed rows were randomly generated so there may be duplicates.

It can be seen from the first 3 rows of the table above that as the number

of missing µPMUs increased, the identification accuracy has also increased,

which is in line with the conclusion obtained by Section 5.3.1.

From the case "Missing 4 µPMUs", the zeroed rows were randomly gener-

ated; Since it could be duplicate µPMUs, the accuracy observation has a

small fluctuation from "Missing 3" to "Missing 4". But the trend from "Miss-

ing 4" to "Missing 5" is also rising. The accuracy of the proposed framework

under "Missing 6" drops a bit; it may be due to the error in the random

training of the neural network or the loss of more than a certain range of

µPMUs. Hence, it can be seen that the accuracy of topology identification

would not be sacrificed by missing a few µPMU sensors in the grid.
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5.3.2.2 Partial Observability with Two-Third of µPMU Sensors

Figure 5.1: The topology observation with 22 µPMU sensors

From Table 5.1, it can be seen that the accuracy of the topology identi-

fication and estimation is high under full network observation. Although

a comprehensive observation can give a very accurate forecast, it will un-

doubtedly increase the cost of the electrical equipment (investment costs

of PMUs) and maintenance. It is therefore necessary to employ and study

the least number of µPMUs to observe the entire electrical network. Since

the full observation needs 33 µPMUs across the network (one sensor at

each node), we here use 22 µPMUs, which are the two-third of µPMUs in

the network, to observe the entire test feeder, and see how accurate the

proposed analytics are under such circumstances.

The locations of the µPMUs cannot be randomly selected as in Sec-

tion 5.3.2. The criterion for µPMU removal is by checking whether it is a

duplicate µPMU on a same branch with no topology change. The remaining

22 µPMUs are shown in Table 5.4. Comparing with Table 5.1, Table 5.5 be-

low shows the identification accuracy of different cases under the availability
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Table 5.4: 22 µPMU Components

µPMU 808 822 890 836
(Voltage & angle, Current & angle) 810 824 858 840

(3×2, 3×2) if three-phase 814 826 864 862
(6, 6) if three-phase 850 854 834 838

816 856 844
818 832 848

of two-third of the µPMUs in the network.

Table 5.5: The identification accuracy of the interfered dataset under the
two-third µPMUs observation

Test Scenarios Interference
SNR (dB)

Number
of Epochs

Best Validation
Accuracy (%)

Best Prediction
Accuracy (%)

Two-Third Measurement - 20 100 100
Two-Third Measurement 10 20 100 100

Missing One Data - 20 100 100
Missing Two Data - 20 100 99.95
Missing One Data 20 20 100 100
Missing Two Data 20 20 100 99.86
Missing One Data 10 20 100 100
Missing Two Data 10 20 99.82 99.73

It is obvious that the validation accuracy and prediction accuracy are both

achieved the same high of full observation under the two-third observation,

which means the neural network framework could also work accurately

under the two-third observation. Because the µPMUs are reduced randomly,

this experimental conclusion can save one-third of the cost on the premise

of ensuring the accuracy of power grid topology identification.

5.3.2.3 Partial Observability with One-Third µPMUs Sensors

Since the two-third observation could work accurately, we here observe

the power grid with even fewer number of µPMUs. Figure 5.2 below shows

a scenario in which 12 number of µPMUs are used to observe the entire

network. Similarly, the locations of the µPMUs are specifically selected.
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Figure 5.2: The topology observation with 12 µPMU sensors

Table 5.6: 12 µPMU Components

µPMU 808 822 844
(Voltage & angle, Current & angle) 816 832 836

(3×2, 3×2) if three-phase 822 858 840
(6, 6) if three-phase 824 834 862
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Table 5.7: Different numbers of µPMU Observation

µPMU
Number 12 11 10 9 8 7 6 5

808
√ √ √ √ √ √ √ √

816
√ √ √ √ √ √ √ √

822
√ √ √ √ √ √ √ √

824
√ √

854
√

832
√ √ √

858
√ √ √ √ √

834
√ √ √ √ √ √

844
√ √ √ √ √ √ √ √

836
√ √ √ √

840
√ √ √ √ √ √ √ √

862
√ √ √ √ √ √ √

Best Validation
Accuracy (%) 100 100 98.72 94.11 88.82 88.99 98.45 54.52

Best Prediction
Accuracy (%) 100 100 98.99 93.96 88.59 89.01 98.63 54.49

√
: be picked to observe the power grid.

The accuracy of the proposed topology identification algorithm with 12

µPMUs is found still high and promising. Table 5.7 summarizes several

conditions and the corresponding accuracy. The conclusion that can be

drawn is under the situation of 5 breakers, placing at least 6 µPMUs in

suitable locations can ensure the accuracy of the observation of the entire

power grid. The accuracy of case "5 µPMUs" has significantly reduced

because of the loss of µPMU 862, which is the only one that could observe

the breaking of "SW 5".

The overall observation is that as the number of µPMUs decreases, the

topology identification accuracy continues to decline. The accuracy of "6

µPMUs" is achieved high which is most likely because the 5 breakers divided

the test feeder into 6 zones, and the 6 manually selected µPMU positions

are corresponded to 6 zones respectively. So the neural network can easily
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distinguish their "0-1" situations. For manual selection of µPMU installation

locations, one needs to ensure that there is at least one µPMU sensor on

each independent power grid sub-branch, so that the actual minimum

number of µPMUs installed is equal to the number of the sub-branch plus

one. Hence, a full observation in the network will be achieved, enabling to

harness the measurements for effective topology identification in real-time.
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Chapter 6: Conclusion

6.1 Summary of Current Work

This thesis presents a deep learning framework for online detection of

power distribution system topology. The proposed framework can handle

missing measurements under unbalanced operating states in power dis-

tribution systems, and real-time topology identification (for within known

database), and estimation (for the beyond known database) of the system

topology following disturbances. The proposed framework utilizes phasor

measurements from µPMUs at all buses (full observation) and a number

of selected buses (partial observation). For estimation (prediction), the ap-

proach is manually adding several µPMU datasets that contain missing

entries or noise or both, and test them with a trained neural network.

The experiments show that the proposed CNN framework not only han-

dles the data with the same level of interference (noise and missing measure-

ments), but also has the capacity of estimating the interfered data which has

different distributions from the training examples. Numerical experiments

proved that the proposed trained network can almost accurately identify

the power network topology corresponding to the observed data beyond the

training dataset. For random loss of µPMUs, the availability of µPMUs at

two-thirds of the network buses can guarantee around 98% accuracy in the

topology identification; For specifically generated scenarios, the number of

µPMU that can promise the high identification accuracy should be equal to

the number of branches that can be independent.
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6.2 Future Research

Future work could be targeted at implementing the proposed framework

on a larger real-world power grid, such as the IEEE 123-bus test system,

and validating the results accuracy and computational effectiveness during

real-time applications. Moreover, the performance of the proposed analytics

in power grids with high penetration of renewable energy resources and

energy storage technologies should be investigated [155–175]. Moreover, the

role and performance of the proposed solutions in an integrated ecosystem

of critical infrastructures (e.g., transportation, water, communication, etc)

should be analyzed [176].

Additionally, the CNN optimizer was selected as "Adam" [153], which is an

optimization algorithm that can be used instead of the classical stochastic

gradient descent procedure to update the network weights iteratively based

on the training data. There are also many other algorithms that could

be tested and analyzed. Each algorithm owned its advantages and short-

comings. Hence, follow-up research could try to use different algorithms

and compare their performance in the network topology identification ap-

plication. Additionally, this thesis mainly used CNN by training the PMU

datasets to predict the power system topology, where the Python library

in this thesis was Pytorch. There are some other libraries like TensorFlow

and Keras that could be explored. Besides CNN, there are also many other

ML algorithms, such as Support Vector Machine (SVM), Autoencoder (AE),

and Capsule Neural Network (CapsNet), that could be approached in this

application and under a variety of operating conditions in the power grid.
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Appendix A: IEEE 34 Node Test Feeder

A.1 Introduction

Figure A.1: IEEE 34-Node Test Feeder [6]

This feeder is an actual feeder located in Arizona. The feeder’s nominal

voltage is 24.9 kV. It is characterized by:

(1) Very long and lightly loaded overhead distribution lines

(2) Two in-line regulators required to maintain a good voltage profile across

the network

(3) A wye-wye grounded transformer reducing the voltage to 4.16 kV for a

short section of the feeder

(4) 24 unbalanced loading with both “spot” and “distributed” loads. Dis-

tributed loads are assumed to be evenly distributed on the distribution

line.
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(5) Shunt capacitors

Because of the length of the feeder and the unbalanced loading, the

system may at times have a convergence problem.

A.2 System Data

Here are the data forms originated from the IEEE PES AMPS DSAS test

feeder working group [6].

Table A.1: Overhead Line Configurations [6]

Config. Phasing Phase ACSR1 Neutral ACSR Spacing ID
300 BACN 1/0 1/0 500
301 BACN #2 6/1 #2 6/1 500
302 AN #4 6/1 #4 6/1 510
303 BN #4 6/1 #4 6/1 510
304 BN #2 6/1 #2 6/1 510

1 ACSR: Aluminum conductor steel reinforced.
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Table A.2: Line Segment Data [6]

Node A Node B Length (ft.) Config.
800 802 2580 300
802 806 1730 300
806 808 32230 300
808 810 5804 303
808 812 37500 300
812 814 29730 300
814 850 10 301
816 818 1710 302
816 824 10210 301
818 820 48150 302
820 822 13740 302
824 826 3030 303
824 828 840 301
828 830 20440 301
830 854 520 301
832 858 4900 301
832 888 0 XFM-1
834 860 2020 301
834 842 280 301
836 840 860 301
836 862 280 301
842 844 1350 301
844 846 3640 301
846 848 530 301
850 816 130 301
852 832 10 301
854 856 23330 303
854 852 36830 301
858 864 1620 302
858 834 5830 301
860 836 2680 301
862 838 4860 304
888 890 10560 300

Table A.3: Transformer Data [6]

kVA kV - high kV - low R - % X - %
Substation 2500 69 - D 24.9 - Gr.W 1 8
XFM-1 500 24.9 - Gr.W 24.9 - Gr.W 1.9 4.08
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Table A.4: Spot Loads [6]

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-4
Model kW kVAr kW kVAr kW kVAr

860 Y-PQ 20 16 20 16 20 16
802 Y-I 9 7 9 7 9 7
806 Y-Z 135 105 135 105 135 105
808 D-PQ 20 16 20 16 20 16
808 D-I 150 75 150 75 150 75
812 D-Z 10 5 10 5 25 10

Total 344 224 344 224 359 229

Table A.5: Distributed Loads [6]

Node Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
A B Model kW kVAr kW kVAr kW kVAr

802 806 Y-PQ 0 0 30 15 25 14
808 810 Y-I 0 0 16 8 0 0
818 820 Y-Z 34 17 0 0 0 0
820 822 Y-PQ 135 70 0 0 0 0
816 824 D-I 0 0 5 2 0 0
824 826 Y-I 0 0 40 20 0 0
824 828 Y-PQ 0 0 0 0 4 2
828 830 Y-PQ 7 3 0 0 0 0
854 856 Y-PQ 0 0 4 2 0 0
832 858 D-Z 7 3 2 1 6 3
858 864 Y-PQ 2 1 0 0 0 0
858 834 D-PQ 4 2 15 8 13 7
834 860 D-Z 16 8 20 10 110 55
860 836 D-PQ 30 15 10 6 42 22
836 840 D-I 18 9 22 11 0 0
862 838 Y-PQ 0 0 28 14 0 0
842 844 Y-PQ 9 5 0 0 0 0
844 846 Y-PQ 0 0 25 12 20 11
846 848 Y-PQ 0 0 23 11 0 0

Total 262 133 240 120 220 114
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Table A.6: Shunt Capacitors [6]

Node Ph-A Ph-B Ph-C
kVAr kVAr kVAr

844 100 100 100
848 150 150 150
Total 250 250 250

Table A.7: Regulator Data [6]

Regulator ID 1 2

Line Segment 814-850 852-832

Location 814 852

Phases A-B-C A-B-C

Connection 3-Ph, LG 3-Ph, LG

Monitoring Phase A-B-C A-B-C

Bandwidth 2.0 volts 2.0 volts

PT Ratio 120 120

Primary CT Rating 100 100

Compensator Settings Ph-A Ph-B Ph-C Ph-A Ph-B Ph-C

R-Setting 2.7 2.7 2.7 2.5 2.5 2.5
X-Setting 1.6 1.6 1.6 1.6 1.6 1.6

Vlotage Level 122 122 122 124 124 124
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A.3 Impedances

Configuration 300:

−−−−−−−−− Z & B Matrices Before Changes −−−−−−−−−

Z (R +jX ) in ohms per mile

1.3368 1.3343 0.2101 0.5779 0.2130 0.5015

1.3238 1.3569 0.2066 0.4591

1.3294 1.3471

B in micro Siemens per mile

5.3350 −1.5313 −0.9943

5.0979 −0.6212

4.8880

Configuration 301:

Z (R +jX ) in ohms per mile

1.9300 1.4115 0.2327 0.6442 0.2359 0.5691

1.9157 1.4281 0.2288 0.5238

1.9219 1.4209

B in micro Siemens per mile

5.1207 −1.4364 −0.9402

4.9055 −0.5951

4.7154

Configuration 302:

Z (R +jX ) in ohms per mile

2.7995 1.4855 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000

B in micro Siemens per mile

4.2251 0.0000 0.0000

0.0000 0.0000

0.0000

Configuration 303:

Z (R +jX ) in ohms per mile

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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2.7995 1.4855 0.0000 0.0000

0.0000 0.0000

B in micro Siemens per mile

0.0000 0.0000 0.0000

4.2251 0.0000

0.0000

Configuration 304:

Z (R +jX ) in ohms per mile

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.9217 1.4212 0.0000 0.0000

0.0000 0.0000

B in micro Siemens per mile

0.0000 0.0000 0.0000

4.3637 0.0000

0.0000

A.4 Power Flow Results

A.4.1 Radial Flow Summary

− R A D I A L F L O W S U M M A R Y − DATE: 6−24−2004 AT 16:34:11 HOURS −−−

SUBSTATION: IEEE 34; FEEDER: IEEE 34

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SYSTEM PHASE PHASE PHASE TOTAL

INPUT −−−−−−−(A)−−−−−−−|−−−−−−−(B)−−−−−−−|−−−−−−−(C)−−−−−−−|−−−−−−−−−−−−−−−−−−

kW : 759.136 | 666.663 | 617.072 | 2042.872

kVAr : 171.727 | 90.137 | 28.394 | 290.258

kVA : 778.318 | 672.729 | 617.725 | 2063.389

PF : .9754 | .9910 | .9989 | .9901

LOAD −−(A−N)−−−−(A−B)−|−−(B−N)−−−−(B−C)−|−−(C−N)−−−−(C−A)−|−−−WYE−−−−−DELTA−−

kW : 359.9 246.4| 339.3 243.3| 221.8 359.0| 921.0 848.8

TOT : 606.322 | 582.662 | 580.840 | 1769.824

| | |

kVAr : 230.9 128.7| 216.9 128.7| 161.8 184.6| 609.6 441.9

TOT : 359.531 | 345.609 | 346.407 | 1051.547

| | |
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kVA : 427.6 278.0| 402.7 275.3| 274.6 403.7| 1104.5 957.0

TOT : 704.903 | 677.452 | 676.293 | 2058.647

| | |

PF : .8417 .8864| .8425 .8840| .8078 .8894| .8339 .8870

TOT : .8601 | .8601 | .8589 | .8597

LOSSES −−−−−−(A)−−−−−−−|−−−−−−−(B)−−−−−−−|−−−−−−−(C)−−−−−−−|−−−−−−−−−−−−−−−−−−

kW : 114.836 | 80.389 | 77.824 | 273.049

kVAr : 14.200 | 10.989 | 9.810 | 34.999

kVA : 115.711 | 81.137 | 78.440 | 275.283

CAPAC −−(A−N)−−−−(A−B)−|−−(B−N)−−−−(B−C)−|−−(C−N)−−−−(C−A)−|−−−WYE−−−−−DELTA−−

R−kVA: 250.0 .0| 250.0 .0| 250.0 .0| 750.0 .0

TOT : 250.000 | 250.000 | 250.000 | 750.000

| | |

A−kVA: 265.7 .0| 264.8 .0| 265.9 .0| 796.3 .0

TOT : 265.658 | 264.760 | 265.869 | 796.287

A.4.2 Voltage Profile

−−− V O L T A G E P R O F I L E −−−− DATE: 6−24−2004 AT 16:34:18 HOURS −−−−

SUBSTATION: IEEE 34; FEEDER: IEEE 34

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

NODE | MAG ANGLE | MAG ANGLE | MAG ANGLE |mi. to SR

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

______|_______ A−N ______ |_______ B−N _______ |_______ C−N _______ |

800 | 1.0500 at .00 | 1.0500 at −120.00 | 1.0500 at 120.00 | .000

802 | 1.0475 at −.05 | 1.0484 at −120.07 | 1.0484 at 119.95 | .489

806 | 1.0457 at −.08 | 1.0474 at −120.11 | 1.0474 at 119.92 | .816

808 | 1.0136 at −.75 | 1.0296 at −120.95 | 1.0289 at 119.30 | 6.920

810 | | 1.0294 at −120.95 | | 8.020

812 | .9763 at −1.57 | 1.0100 at −121.92 | 1.0069 at 118.59 | 14.023

814 | .9467 at −2.26 | .9945 at −122.70 | .9893 at 118.01 | 19.653

RG10 | 1.0177 at −2.26 | 1.0255 at −122.70 | 1.0203 at 118.01 | 19.654

850 | 1.0176 at −2.26 | 1.0255 at −122.70 | 1.0203 at 118.01 | 19.655

816 | 1.0172 at −2.26 | 1.0253 at −122.71 | 1.0200 at 118.01 | 19.714

818 | 1.0163 at −2.27 | | | 20.038

820 | .9926 at −2.32 | | | 29.157

822 | .9895 at −2.33 | | | 31.760
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824 | 1.0082 at −2.37 | 1.0158 at −122.94 | 1.0116 at 117.76 | 21.648

826 | | 1.0156 at −122.94 | | 22.222

828 | 1.0074 at −2.38 | 1.0151 at −122.95 | 1.0109 at 117.75 | 21.807

830 | .9894 at −2.63 | .9982 at −123.39 | .9938 at 117.25 | 25.678

854 | .9890 at −2.64 | .9978 at −123.40 | .9934 at 117.24 | 25.777

852 | .9581 at −3.11 | .9680 at −124.18 | .9637 at 116.33 | 32.752

RG11 | 1.0359 at −3.11 | 1.0345 at −124.18 | 1.0360 at 116.33 | 32.752

832 | 1.0359 at −3.11 | 1.0345 at −124.18 | 1.0360 at 116.33 | 32.754

858 | 1.0336 at −3.17 | 1.0322 at −124.28 | 1.0338 at 116.22 | 33.682

834 | 1.0309 at −3.24 | 1.0295 at −124.39 | 1.0313 at 116.09 | 34.786

842 | 1.0309 at −3.25 | 1.0294 at −124.39 | 1.0313 at 116.09 | 34.839

844 | 1.0307 at −3.27 | 1.0291 at −124.42 | 1.0311 at 116.06 | 35.095

846 | 1.0309 at −3.32 | 1.0291 at −124.46 | 1.0313 at 116.01 | 35.784

848 | 1.0310 at −3.32 | 1.0291 at −124.47 | 1.0314 at 116.00 | 35.885

860 | 1.0305 at −3.24 | 1.0291 at −124.39 | 1.0310 at 116.09 | 35.169

836 | 1.0303 at −3.23 | 1.0287 at −124.39 | 1.0308 at 116.09 | 35.677

840 | 1.0303 at −3.23 | 1.0287 at −124.39 | 1.0308 at 116.09 | 35.839

862 | 1.0303 at −3.23 | 1.0287 at −124.39 | 1.0308 at 116.09 | 35.730

838 | | 1.0285 at −124.39 | | 36.650

864 | 1.0336 at −3.17 | | | 33.989

XF10 | .9997 at −4.63 | .9983 at −125.73 | 1.0000 at 114.82 | 32.754

888 | .9996 at −4.64 | .9983 at −125.73 | 1.0000 at 114.82 | 32.754

890 | .9167 at −5.19 | .9235 at −126.78 | .9177 at 113.98 | 34.754

856 | | .9977 at −123.41 | | 30.195

A.4.3 Voltage Regulator Data

−−−−−−−−−−− VOLTAGE REGULATOR DATA −−−− DATE: 6−24−2004 AT 16:34:22 HOURS −−

SUBSTATION: IEEE 34; FEEDER: IEEE 34

_______________________________________________________________________________

[NODE]−−[VREG]−−−−−[SEG]−−−−−−[NODE] MODEL OPT BNDW

814 RG10 850 850 Phase A & B & C, Wye RX 2.00

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PHASE LDCTR VOLT HOLD R−VOLT X−VOLT PT RATIO CT RATE TAP

1 122.000 2.700 1.600 120.00 100.00 12

2 122.000 2.700 1.600 120.00 100.00 5

3 122.000 2.700 1.600 120.00 100.00 5

_______________________________________________________________________________

[NODE]−−[VREG]−−−−−[SEG]−−−−−−[NODE] MODEL OPT BNDW
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852 RG11 832 832 Phase A & B & C, Wye RX 2.00

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PHASE LDCTR VOLT HOLD R−VOLT X−VOLT PT RATIO CT RATE TAP

1 124.000 2.500 1.500 120.00 100.00 13

2 124.000 2.500 1.500 120.00 100.00 11

3 124.000 2.500 1.500 120.00 100.00 12

A.4.4 Radial Power Flow

− R A D I A L P O W E R F L O W −−− DATE: 6−24−2004 AT 16:34:32 HOURS −−−

SUBSTATION: IEEE 34; FEEDER: IEEE 34

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

NODE VALUE PHASE A PHASE B PHASE C UNT O/L<

(LINE A) ( LINE B) ( LINE C) 60.%

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 800 VOLTS: 1.050 .00 1.050 −120.00 1.050 120.00 MAG/ANG

kVll 24.900 NO LOAD OR CAPACITOR REPRESENTED AT SOURCE NODE

TO NODE 802 . . . . . . . : 51.56 −12.74 44.57 −127.70 40.92 117.37 AMP/DG

<802 > LOSS= 3.472: ( 1.637) ( .978) ( .858) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 802 VOLTS: 1.047 −.05 1.048 −120.07 1.048 119.95 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 800 . . . . . : 51.58 −12.80 44.57 −127.76 40.93 117.31 AMP/DG

<802 > LOSS= 3.472: ( 1.637) ( .978) ( .858) kW

TO NODE 806 . . . . . . . : 51.58 −12.80 44.57 −127.76 40.93 117.31 AMP/DG

<806 > LOSS= 2.272: ( 1.102) ( .618) ( .552) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 806 VOLTS: 1.046 −.08 1.047 −120.11 1.047 119.92 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 802 . . . . . : 51.59 −12.83 42.47 −126.83 39.24 118.52 AMP/DG

<806 > LOSS= 2.272: ( 1.102) ( .618) ( .552) kW

TO NODE 808 . . . . . . . : 51.59 −12.83 42.47 −126.83 39.24 118.52 AMP/DG

<808 > LOSS= 41.339: ( 20.677) ( 10.780) ( 9.882) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−
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NODE: 808 VOLTS: 1.014 −.75 1.030 −120.95 1.029 119.30 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 806 . . . . . : 51.76 −13.47 42.46 −127.59 39.28 117.76 AMP/DG

<808 > LOSS= 41.339: ( 20.677) ( 10.780) ( 9.882) kW

TO NODE 810 . . . . . . . : 1.22 −144.62 AMP/DG

<810 > LOSS= .002: ( .002) kW

TO NODE 812 . . . . . . . : 51.76 −13.47 41.30 −127.10 39.28 117.76 AMP/DG

<812 > LOSS= 47.531: ( 24.126) ( 11.644) ( 11.761) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 810 VOLTS: 1.029 −120.95 MAG/ANG

−LD: .00 .00 kW/kVR

kVll 24.900 CAP: .00 kVR

FROM NODE 808 . . . . . : .00 .00 AMP/DG

<810 > LOSS= .002: ( .002) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 812 VOLTS: .976 −1.57 1.010 −121.92 1.007 118.59 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 808 . . . . . : 51.95 −14.18 41.29 −127.99 39.33 116.90 AMP/DG

<812 > LOSS= 47.531: ( 24.126) ( 11.644) ( 11.761) kW

TO NODE 814 . . . . . . . : 51.95 −14.18 41.29 −127.99 39.33 116.90 AMP/DG

<814 > LOSS= 37.790: ( 19.245) ( 9.140) ( 9.404) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 814 VOLTS: .947 −2.26 .994 −122.70 .989 118.01 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 812 . . . . . : 52.10 −14.73 41.29 −128.69 39.37 116.23 AMP/DG

<814 > LOSS= 37.790: ( 19.245) ( 9.140) ( 9.404) kW

TO NODE RG10 .<VRG>. : 52.10 −14.73 41.29 −128.69 39.37 116.23 AMP/DG

<RG10 > LOSS= .000: ( .000) ( .000) ( .000) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: RG10 VOLTS: 1.018 −2.26 1.026 −122.70 1.020 118.01 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 814 <VRG>: 48.47 −14.73 40.04 −128.69 38.17 116.23 AMP/DG
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<RG10 > LOSS= .000: ( .000) ( .000) ( .000) kW

TO NODE 850 . . . . . . . : 48.47 −14.73 40.04 −128.69 38.17 116.23 AMP/DG

<850 > LOSS= .017: ( .008) ( .005) ( .005) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 850 VOLTS: 1.018 −2.26 1.026 −122.70 1.020 118.01 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE RG10 . . . . . : 48.47 −14.73 40.04 −128.69 38.17 116.23 AMP/DG

<850 > LOSS= .017: ( .008) ( .005) ( .005) kW

TO NODE 816 . . . . . . . : 48.47 −14.73 40.04 −128.69 38.17 116.23 AMP/DG

<816 > LOSS= .538: ( .254) ( .145) ( .139) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 816 VOLTS: 1.017 −2.26 1.025 −122.71 1.020 118.01 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 850 . . . . . : 48.47 −14.74 40.04 −128.70 38.17 116.23 AMP/DG

<816 > LOSS= .538: ( .254) ( .145) ( .139) kW

TO NODE 818 . . . . . . . : 13.02 −26.69 AMP/DG

<818 > LOSS= .154: ( .154) kW

TO NODE 824 . . . . . . . : 35.83 −10.42 40.04 −128.70 38.17 116.23 AMP/DG

<824 > LOSS= 14.181: ( 4.312) ( 5.444) ( 4.425) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 818 VOLTS: 1.016 −2.27 MAG/ANG

−LD: .00 .00 kW/kVR

kVll 24.900 CAP: .00 kVR

FROM NODE 816 . . . . . : 13.03 −26.77 AMP/DG

<818 > LOSS= .154: ( .154) kW

TO NODE 820 . . . . . . . : 13.03 −26.77 AMP/DG

<820 > LOSS= 3.614: ( 3.614) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 820 VOLTS: .993 −2.32 MAG/ANG

−LD: .00 .00 kW/kVR

kVll 24.900 CAP: .00 kVR

FROM NODE 818 . . . . . : 10.62 −28.98 AMP/DG

<820 > LOSS= 3.614: ( 3.614) kW

TO NODE 822 . . . . . . . : 10.62 −28.98 AMP/DG

<822 > LOSS= .413: ( .413) kW
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−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 822 VOLTS: .990 −2.33 MAG/ANG

−LD: .00 .00 kW/kVR

kVll 24.900 CAP: .00 kVR

FROM NODE 820 . . . . . : .00 .00 AMP/DG

<822 > LOSS= .413: ( .413) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 824 VOLTS: 1.008 −2.37 1.016 −122.94 1.012 117.76 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 816 . . . . . : 35.87 −10.70 39.82 −129.02 38.05 116.25 AMP/DG

<824 > LOSS= 14.181: ( 4.312) ( 5.444) ( 4.425) kW

TO NODE 826 . . . . . . . : 3.10 −148.92 AMP/DG

<826 > LOSS= .008: ( .008) kW

TO NODE 828 . . . . . . . : 35.87 −10.70 36.93 −127.39 38.05 116.25 AMP/DG

<828 > LOSS= 1.108: ( .361) ( .393) ( .354) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 826 VOLTS: 1.016 −122.94 MAG/ANG

−LD: .00 .00 kW/kVR

kVll 24.900 CAP: .00 kVR

FROM NODE 824 . . . . . : .00 .00 AMP/DG

<826 > LOSS= .008: ( .008) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 828 VOLTS: 1.007 −2.38 1.015 −122.95 1.011 117.75 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 824 . . . . . : 35.87 −10.72 36.93 −127.41 37.77 116.42 AMP/DG

<828 > LOSS= 1.108: ( .361) ( .393) ( .354) kW

TO NODE 830 . . . . . . . : 35.87 −10.72 36.93 −127.41 37.77 116.42 AMP/DG

<830 > LOSS= 26.587: ( 8.443) ( 9.214) ( 8.930) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 830 VOLTS: .989 −2.63 .998 −123.39 .994 117.25 MAG/ANG

D−LD: 9.95 4.98 9.86 4.93 24.55 9.82 kW/kVR

kVll 24.900 Y CAP: .00 .00 .00 kVR

FROM NODE 828 . . . . . : 35.43 −11.06 36.91 −127.92 37.79 115.96 AMP/DG

<830 > LOSS= 26.587: ( 8.443) ( 9.214) ( 8.930) kW
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TO NODE 854 . . . . . . . : 34.22 −9.97 36.19 −127.47 36.49 116.26 AMP/DG

<854 > LOSS= .635: ( .197) ( .227) ( .211) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 854 VOLTS: .989 −2.64 .998 −123.40 .993 117.24 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 830 . . . . . : 34.23 −9.99 36.19 −127.48 36.49 116.25 AMP/DG

<854 > LOSS= .635: ( .197) ( .227) ( .211) kW

TO NODE 852 . . . . . . . : 34.23 −9.99 35.93 −127.72 36.49 116.25 AMP/DG

<852 > LOSS= 44.798: ( 13.996) ( 15.778) ( 15.023) kW

TO NODE 856 . . . . . . . : .31 −98.70 AMP/DG

<856 > LOSS= .001: ( .001) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 852 VOLTS: .958 −3.11 .968 −124.18 .964 116.33 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 854 . . . . . : 34.35 −11.00 35.90 −128.66 36.52 115.41 AMP/DG

<852 > LOSS= 44.798: ( 13.996) ( 15.778) ( 15.023) kW

TO NODE RG11 .<VRG>. : 34.35 −11.00 35.90 −128.66 36.52 115.41 AMP/DG

<RG11 > LOSS= .000: ( .000) ( .000) ( .000) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: RG11 VOLTS: 1.036 −3.11 1.035 −124.18 1.036 116.33 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 852 <VRG>: 31.77 −11.00 33.59 −128.66 33.98 115.41 AMP/DG

<RG11 > LOSS= .000: ( .000) ( .000) ( .000) kW

TO NODE 832 . . . . . . . : 31.77 −11.00 33.59 −128.66 33.98 115.41 AMP/DG

<832 > LOSS= .011: ( .003) ( .004) ( .004) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 832 VOLTS: 1.036 −3.11 1.035 −124.18 1.036 116.33 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE RG11 . . . . . : 31.77 −11.00 33.59 −128.66 33.98 115.41 AMP/DG

<832 > LOSS= .011: ( .003) ( .004) ( .004) kW

TO NODE 858 . . . . . . . : 21.31 .47 23.40 −116.89 24.34 128.36 AMP/DG

<858 > LOSS= 2.467: ( .643) ( .997) ( .827) kW

TO NODE XF10 . . . . . . . : 11.68 −32.29 11.70 −152.73 11.61 87.39 AMP/DG <
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<XF10 > LOSS= 9.625: ( 3.196) ( 3.241) ( 3.187) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 858 VOLTS: 1.034 −3.17 1.032 −124.28 1.034 116.22 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 832 . . . . . : 20.86 .86 23.13 −116.39 24.02 128.48 AMP/DG

<858 > LOSS= 2.467: ( .643) ( .997) ( .827) kW

TO NODE 834 . . . . . . . : 20.73 1.01 23.13 −116.39 24.02 128.48 AMP/DG

<834 > LOSS= 2.798: ( .717) ( 1.145) ( .936) kW

TO NODE 864 . . . . . . . : .14 −22.82 AMP/DG

<864 > LOSS= .000: ( .000) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 834 VOLTS: 1.031 −3.24 1.029 −124.39 1.031 116.09 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 858 . . . . . : 20.29 2.18 22.37 −116.07 23.23 130.06 AMP/DG

<834 > LOSS= 2.798: ( .717) ( 1.145) ( .936) kW

TO NODE 842 . . . . . . . : 14.75 34.68 16.30 −95.63 15.12 151.05 AMP/DG

<842 > LOSS= .064: ( .015) ( .032) ( .017) kW

TO NODE 860 . . . . . . . : 11.16 −43.05 9.09 −154.82 10.60 99.34 AMP/DG

<860 > LOSS= .141: ( .021) ( .104) ( .017) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 842 VOLTS: 1.031 −3.25 1.029 −124.39 1.031 116.09 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 834 . . . . . : 14.74 34.67 16.30 −95.64 15.12 151.03 AMP/DG

<842 > LOSS= .064: ( .015) ( .032) ( .017) kW

TO NODE 844 . . . . . . . : 14.74 34.67 16.30 −95.64 15.12 151.03 AMP/DG

<844 > LOSS= .306: ( .068) ( .156) ( .083) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 844 VOLTS: 1.031 −3.27 1.029 −124.42 1.031 116.06 MAG/ANG

Y−LD: 143.41 111.54 142.97 111.20 143.51 111.62 kW/kVR

kVll 24.900 Y CAP: 106.23 105.90 106.31 kVR

FROM NODE 842 . . . . . : 14.47 37.12 16.29 −95.71 15.11 150.97 AMP/DG

<844 > LOSS= .306: ( .068) ( .156) ( .083) kW

TO NODE 846 . . . . . . . : 9.83 78.88 9.40 −63.87 9.40 −170.67 AMP/DG

<846 > LOSS= .323: ( .043) ( .212) ( .068) kW
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−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 846 VOLTS: 1.031 −3.32 1.029 −124.46 1.031 116.01 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 844 . . . . . : 9.76 78.80 9.40 −52.54 9.78 −161.93 AMP/DG

<846 > LOSS= .323: ( .043) ( .212) ( .068) kW

TO NODE 848 . . . . . . . : 9.76 78.80 9.40 −52.54 9.78 −161.93 AMP/DG

<848 > LOSS= .048: ( .007) ( .031) ( .010) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 848 VOLTS: 1.031 −3.32 1.029 −124.47 1.031 116.00 MAG/ANG

D−LD: 20.00 16.00 20.00 16.00 20.00 16.00 kW/kVR

kVll 24.900 Y CAP: 159.43 158.86 159.56 kVR

FROM NODE 846 . . . . . : 9.76 78.79 9.77 −42.47 9.78 −161.94 AMP/DG

<848 > LOSS= .048: ( .007) ( .031) ( .010) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 860 VOLTS: 1.030 −3.24 1.029 −124.39 1.031 116.09 MAG/ANG

Y−LD: 20.00 16.00 20.00 16.00 20.00 16.00 kW/kVR

kVll 24.900 Y CAP: .00 .00 .00 kVR

FROM NODE 834 . . . . . : 5.87 −33.62 7.68 −156.52 5.29 86.10 AMP/DG

<860 > LOSS= .141: ( .021) ( .104) ( .017) kW

TO NODE 836 . . . . . . . : 4.16 −30.19 5.96 −154.63 3.60 90.25 AMP/DG

<836 > LOSS= .039: ( −.035) ( .103) ( −.028) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 836 VOLTS: 1.030 −3.23 1.029 −124.39 1.031 116.09 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 860 . . . . . : 1.49 −19.83 4.42 −150.74 1.74 68.08 AMP/DG

<836 > LOSS= .039: ( −.035) ( .103) ( −.028) kW

TO NODE 840 . . . . . . . : 1.50 −20.01 2.33 −151.97 1.75 68.00 AMP/DG

<840 > LOSS= .002: ( −.014) ( .026) ( −.010) kW

TO NODE 862 . . . . . . . : .00 .00 2.09 −149.38 .00 .00 AMP/DG

<862 > LOSS= .000: ( −.005) ( .009) ( −.004) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 840 VOLTS: 1.030 −3.23 1.029 −124.39 1.031 116.09 MAG/ANG

Y−LD: 9.27 7.21 9.26 7.20 9.28 7.22 kW/kVR

kVll 24.900 Y CAP: .00 .00 .00 kVR
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FROM NODE 836 . . . . . : .79 −41.11 .79 −162.26 .79 78.21 AMP/DG

<840 > LOSS= .002: ( −.014) ( .026) ( −.010) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 862 VOLTS: 1.030 −3.23 1.029 −124.39 1.031 116.09 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 24.900 CAP: .00 .00 .00 kVR

FROM NODE 836 . . . . . : .00 .00 2.09 −149.50 .00 .00 AMP/DG

<862 > LOSS= .000: ( −.005) ( .009) ( −.004) kW

TO NODE 838 . . . . . . . : 2.09 −149.50 AMP/DG

<838 > LOSS= .004: ( .004) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 838 VOLTS: 1.029 −124.39 MAG/ANG

−LD: .00 .00 kW/kVR

kVll 24.900 CAP: .00 kVR

FROM NODE 862 . . . . . : .00 .00 AMP/DG

<838 > LOSS= .004: ( .004) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 864 VOLTS: 1.034 −3.17 MAG/ANG

−LD: .00 .00 kW/kVR

kVll 24.900 CAP: .00 kVR

FROM NODE 858 . . . . . : .00 .00 AMP/DG

<864 > LOSS= .000: ( .000) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: XF10 VOLTS: 1.000 −4.63 .998 −125.73 1.000 114.82 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 4.160 CAP: .00 .00 .00 kVR

FROM NODE 832 . . . . . : 69.90 −32.29 70.04 −152.73 69.50 87.39 AMP/DG <

<XF10 > LOSS= 9.625: ( 3.196) ( 3.241) ( 3.187) kW

TO NODE 888 . . . . . . . : 69.90 −32.29 70.04 −152.73 69.50 87.39 AMP/DG

<888 > LOSS= .000: ( .000) ( .000) ( .000) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 888 VOLTS: 1.000 −4.64 .998 −125.73 1.000 114.82 MAG/ANG

−LD: .00 .00 .00 .00 .00 .00 kW/kVR

kVll 4.160 CAP: .00 .00 .00 kVR

FROM NODE XF10 . . . . . : 69.90 −32.29 70.04 −152.73 69.50 87.39 AMP/DG

<888 > LOSS= .000: ( .000) ( .000) ( .000) kW
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TO NODE 890 . . . . . . . : 69.90 −32.29 70.04 −152.73 69.50 87.39 AMP/DG

<890 > LOSS= 32.760: ( 11.638) ( 9.950) ( 11.173) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 890 VOLTS: .917 −5.19 .924 −126.78 .918 113.98 MAG/ANG

D−LD: 139.11 69.55 137.56 68.78 137.01 68.50 kW/kVR

kVll 4.160 Y CAP: .00 .00 .00 kVR

FROM NODE 888 . . . . . : 69.91 −32.31 70.05 −152.75 69.51 87.37 AMP/DG

<890 > LOSS= 32.760: ( 11.638) ( 9.950) ( 11.173) kW

−−−−−−−−−−−−−−−−−−−−−∗−−−−−−−−A−−−−−−−∗−−−−−−−B−−−−−−−∗−−−−−−−C−−−−−−−∗−−−−−−−−

NODE: 856 VOLTS: .998 −123.41 MAG/ANG

−LD: .00 .00 kW/kVR

kVll 24.900 CAP: .00 kVR

FROM NODE 854 . . . . . : .00 .00 AMP/DG

<856 > LOSS= .001: ( .001) kW
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Appendix B: PMU Data Generating Code

B.1 Generate scenarios

Because themodel was built onMATLAB, the PMU data generating coding

part was also wrote on MATLAB. The shown code is for 2019b version, and

annotated some codes for other versions that have be to changed.

% 1) Load model============================================

model = ’ IEEE_34_node_2019b_scenarios ’ ;

load_system (model ) ;

power_34NodeTestFeeder_loads_init

power_34NodeTestFeeder_init

% 2) Set up the sweep parameters===========================

S1 = [0 ,0 ,0 ,0 ,0] ;

S2 = [1 ,0 ,0 ,0 ,0] ;

S3 = [1 ,1 ,0 ,0 ,0] ;

S4 = [1 ,0 ,1 ,0 ,0] ;

S5 = [1 ,0 ,1 ,0 ,1] ;

S6 = [1 ,0 ,1 ,1 ,0] ;

S7 = [1 ,0 ,1 ,1 ,1] ;

S8 = [1 ,1 ,1 ,0 ,0] ;

S9 = [1 ,1 ,1 ,0 ,1] ;

S10 = [1 ,1 ,1 ,1 ,0] ;

S11 = [1 ,1 ,1 ,1 ,1] ;

Load1 = [Pa_824_828 ,Pp_824_828 ,Pn_824_828 ] ;

Load2 = [Pa_820_822 ,Pp_820_822 ,Pn_820_822 ] ;

Load3 = [Pa_858_834 ,Pp_858_834 ,Pn_858_834 ] ;

Load4 = [Pa_844 ,Pp_844 ,Pn_844 ] ;

Load5 = [Pa_840 ,Pp_840 ,Pn_840 ] ;

L1 = Load1 ;

L2 = Load2 ;

L3 = Load3 ;

L4 = Load4 ;
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L5 = Load5 ;

% 3) Generate loads data for 9 scenarios===================

current_path=pwd; % read path

T=datestr (now, ’mmm−dd−yyyy−HH_MM’ ) ; % read current time

% For Scenario 1 ( Topology 3)

SW=S3;

m=3;

n=1;

folder_name = [ ’ Topology ’ ,num2str (m) ] ;

Dirocry = [ current_path , ’\DataFolder\ ’ , ’DataGeneratedAt−− ’ ,T , ’\ ’ , folder_name ] ;

mkdir ( Dirocry ) ;

for a=linspace (−0.05 ,0.05 ,40)

for b=linspace (−0.05 ,0.05 ,40)

Load = [L1 L2 L3 L4 L5 ] ;

Load=[(1+a ) ∗Load (1 :9 ) (1+b ) ∗Load(10:12) Load(13:end ) ] ;

save_data ( Load ,SW,n, Dirocry ) ;

n=n+1;

end

end

m=m+1;

% For Scenario 2 ( Topology 4)

SW=S4;

n=1;

folder_name = [ ’ Topology ’ ,num2str (m) ] ;

Dirocry = [ current_path , ’\DataFolder\ ’ , ’DataGeneratedAt−− ’ ,T , ’\ ’ , folder_name ] ;

mkdir ( Dirocry ) ;

for a=linspace (−0.05 ,0.05 ,13)

for b=linspace (−0.05 ,0.05 ,13)

for c=linspace (−0.05 ,0.05 ,13)

Load = [L1 L2 L3 L4 L5 ] ;

Load=[(1+a ) ∗Load (1 :9 ) Load(10:12) (1+b ) ∗Load(13:21) Load(22:30) (1+c ) ∗Load(31:

end ) ] ;

save_data ( Load ,SW,n, Dirocry ) ;

n=n+1;

end

end

end

m=m+1;
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% For Scenario 3 ( Topology 5)

SW=S5;

n=1;

folder_name = [ ’ Topology ’ ,num2str (m) ] ;

Dirocry = [ current_path , ’\DataFolder\ ’ , ’DataGeneratedAt−− ’ ,T , ’\ ’ , folder_name ] ;

mkdir ( Dirocry ) ;

for a=linspace (−0.05 ,0.05 ,13)

for b=linspace (−0.05 ,0.05 ,13)

for c=linspace (−0.05 ,0.05 ,13)

Load = [L1 L2 L3 L4 L5 ] ;

Load=[(1+a ) ∗Load (1 :9 ) Load(10:12) (1+b ) ∗Load(13:21) Load(22:30) (1+c ) ∗Load(31:

end ) ] ;

save_data ( Load ,SW,n, Dirocry ) ;

n=n+1;

end

end

end

m=m+1;

% For Scenario 4 ( Topology 6)

SW=S6;

n=1;

folder_name = [ ’ Topology ’ ,num2str (m) ] ;

Dirocry = [ current_path , ’\DataFolder\ ’ , ’DataGeneratedAt−− ’ ,T , ’\ ’ , folder_name ] ;

mkdir ( Dirocry ) ;

for a=linspace (−0.05 ,0.05 ,7)

for b=linspace (−0.05 ,0.05 ,7)

for c=linspace (−0.05 ,0.05 ,7)

for d=linspace (−0.05 ,0.05 ,7)

Load = [L1 L2 L3 L4 L5 ] ;

Load=[(1+a ) ∗Load (1 :9 ) Load(10:12) (1+b ) ∗Load(13:21) (1+c ) ∗Load(22:30) (1+d

) ∗Load(31:end ) ] ;

save_data ( Load ,SW,n, Dirocry ) ;

n=n+1;

end

end

end

end

m=m+1;
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% For Scenario 5 ( Topology 7)

SW=S7;

n=1;

folder_name = [ ’ Topology ’ ,num2str (m) ] ;

Dirocry = [ current_path , ’\DataFolder\ ’ , ’DataGeneratedAt−− ’ ,T , ’\ ’ , folder_name ] ;

mkdir ( Dirocry ) ;

for a=linspace (−0.05 ,0.05 ,7)

for b=linspace (−0.05 ,0.05 ,7)

for c=linspace (−0.05 ,0.05 ,7)

for d=linspace (−0.05 ,0.05 ,7)

Load = [L1 L2 L3 L4 L5 ] ;

Load=[(1+a ) ∗Load (1 :9 ) Load(10:12) (1+b ) ∗Load(13:21) (1+c ) ∗Load(22:30) (1+d

) ∗Load(31:end ) ] ;

save_data ( Load ,SW,n, Dirocry ) ;

n=n+1;

end

end

end

end

m=m+1;

% For Scenario 6 ( Topology 8)

SW=S8;

n=1;

folder_name = [ ’ Topology ’ ,num2str (m) ] ;

Dirocry = [ current_path , ’\DataFolder\ ’ , ’DataGeneratedAt−− ’ ,T , ’\ ’ , folder_name ] ;

mkdir ( Dirocry ) ;

for a=linspace (−0.05 ,0.05 ,7)

for b=linspace (−0.05 ,0.05 ,7)

for c=linspace (−0.05 ,0.05 ,7)

for d=linspace (−0.05 ,0.05 ,7)

Load = [L1 L2 L3 L4 L5 ] ;

Load=[(1+a ) ∗Load (1 :9 ) (1+b ) ∗Load(10:12) (1+c ) ∗Load(13:21) Load(22:30) (1+d

) ∗Load(31:end ) ] ;

save_data ( Load ,SW,n, Dirocry ) ;

n=n+1;

end

end

end

end

m=m+1;
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% For Scenario 7 ( Topology 9)

SW=S9;

n=1;

folder_name = [ ’ Topology ’ ,num2str (m) ] ;

Dirocry = [ current_path , ’\DataFolder\ ’ , ’DataGeneratedAt−− ’ ,T , ’\ ’ , folder_name ] ;

mkdir ( Dirocry ) ;

for a=linspace (−0.05 ,0.05 ,7)

for b=linspace (−0.05 ,0.05 ,7)

for c=linspace (−0.05 ,0.05 ,7)

for d=linspace (−0.05 ,0.05 ,7)

Load = [L1 L2 L3 L4 L5 ] ;

Load=[(1+a ) ∗Load (1 :9 ) (1+b ) ∗Load(10:12) (1+c ) ∗Load(13:21) Load(22:30) (1+d

) ∗Load(31:end ) ] ;

save_data ( Load ,SW,n, Dirocry ) ;

n=n+1;

end

end

end

end

m=m+1;

% For Scenario 8 ( Topology 10)

SW=S10;

n=1;

folder_name = [ ’ Topology ’ ,num2str (m) ] ;

Dirocry = [ current_path , ’\DataFolder\ ’ , ’DataGeneratedAt−− ’ ,T , ’\ ’ , folder_name ] ;

mkdir ( Dirocry ) ;

for a=linspace (−0.05 ,0.05 ,5)

for b=linspace (−0.05 ,0.05 ,5)

for c=linspace (−0.05 ,0.05 ,5)

for d=linspace (−0.05 ,0.05 ,5)

for e=linspace (−0.05 ,0.05 ,5)

Load = [L1 L2 L3 L4 L5 ] ;

Load=[(1+a ) ∗Load (1 :9 ) (1+b ) ∗Load(10:12) (1+c ) ∗Load(13:21) (1+d ) ∗Load

(22:30) (1+e ) ∗Load(31:end ) ] ;

save_data ( Load ,SW,n, Dirocry ) ;

n=n+1;

end

end

end
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end

end

m=m+1;

% For Scenario 9 ( Topology 11)

SW=S11;

n=1;

folder_name = [ ’ Topology ’ ,num2str (m) ] ;

Dirocry = [ current_path , ’\DataFolder\ ’ , ’DataGeneratedAt−− ’ ,T , ’\ ’ , folder_name ] ;

mkdir ( Dirocry ) ;

for a=linspace (−0.05 ,0.05 ,5)

for b=linspace (−0.05 ,0.05 ,5)

for c=linspace (−0.05 ,0.05 ,5)

for d=linspace (−0.05 ,0.05 ,5)

for e=linspace (−0.05 ,0.05 ,5)

Load = [L1 L2 L3 L4 L5 ] ;

Load=[(1+a ) ∗Load (1 :9 ) (1+b ) ∗Load(10:12) (1+c ) ∗Load(13:21) (1+d ) ∗Load

(22:30) (1+e ) ∗Load(31:end ) ] ;

save_data ( Load ,SW,n, Dirocry ) ;

n=n+1;

end

end

end

end

end

The "save data" function is written as:

function save_data ( Load ,SW,n, Dirocry )

load1=Load(1 ,1:9) ;

load2=Load(1 ,10:12) ;

load3=Load(1 ,13:21) ;

load4=Load(1 ,22:30) ;

load5=Load(1 ,31:39) ;

result=table (SW, load1 , load2 , load3 , load4 , load5 ) ;

file_name = [ Dirocry , ’\ ’ ,num2str (n) , ’ . csv ’ ] ;

writetable ( result , file_name ) ;

end
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B.2 Generate PMU Data

Since the data corresponding to different percentages of loads have been

generated under 9 topologies with different switch status scenarios, the

PMU data could be generated with the MATLAB Simulink toolbox. Here, we

used an approach which is a parallel simulation, that could save 80% time

for running the entire process.

It should be noted that some functions would be affected by different

versions of MATLAB, such as "readmatrix" and "writematrix" function could

only be used in the newer versions of MATLAB 2019a; for previous versions,

they should be replaced by "csvread" (or "dlmread") and "csvwrite" if the

data need to be read from .csv file and save in .csv file. In addition, in

MATLAB 2020a and Linux MATLAB, the "parsim" calculation should be

defined detailed into each core with "parfevalOnAll" function.

% Run Para l le l Simulations=============================

simu_number=5; % Set the number for one time para l le l simulation

folder_name=[ current_path , ’\DataFolder\ ’ ] ;

for topology=3:11

l i s t =dir ( [ folder_name ,T, ’\Topology ’ ,num2str ( topology ) , ’\ ’ , ’ ∗ . csv ’ ] ) ;

len=length ( l i s t ) ;

Dirocry = [ folder_name , ’ PMUresults ’ , ’\Topology ’ ,num2str ( topology ) , ’\ ’ ] ;

mkdir ( Dirocry ) ;

counter=1;

num=1;

for loop =1:( len/simu_number ) % 1st running

clear simIn

for idx = 1:simu_number

filename=[ folder_name ,T, ’\Topology ’ ,num2str ( topology ) , ’\ ’ ,num2str ( counter ) , ’ .

csv ’ ] ;

SW=readmatrix ( filename , ’Range ’ , ’A2:E2 ’ ) ; % After 2019a

load=readmatrix ( filename , ’Range ’ , ’F2 :AR2 ’ ) ;

% SW=csvread ( filename ,1 ,0 , [ ’A2 . . E2 ’ ] ) ; % dlmread
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% load=csvread ( filename ,1 ,0 , [ ’F2 . .AR2 ’ ] ) ;

% load=load (2 ,2:40) ;

% Switch

SW850_816 = SW(1 ,1) ;

SW818_820 = SW(1 ,2) ;

SW832_858 = SW(1 ,3) ;

SW834_842 = SW(1 ,4) ;

SW836_862 = SW(1 ,5) ;

% Load 1

Pa_824_828 = table2array ( table ( [ load (1 ,1) load (1 ,2) load (1 ,3) ] ) ) ;

Pp_824_828 = table2array ( table ( [ load (1 ,4) load (1 ,5) load (1 ,6) ] ) ) ;

Pn_824_828 = table2array ( table ( [ load (1 ,7) load (1 ,8) load (1 ,9) ] ) ) ;

% Load 2

Pa_820_822 = table2array ( table ( [ load (1 ,10) ] ) ) ;

Pp_820_822 = table2array ( table ( [ load (1 ,11) ] ) ) ;

Pn_820_822 = table2array ( table ( [ load (1 ,12) ] ) ) ;

% Load 3

Pa_858_834 = table2array ( table ( [ load (1 ,13) load (1 ,14) load (1 ,15) ] ) ) ;

Pp_858_834 = table2array ( table ( [ load (1 ,16) load (1 ,17) load (1 ,18) ] ) ) ;

Pn_858_834 = table2array ( table ( [ load (1 ,19) load (1 ,20) load (1 ,21) ] ) ) ;

% Load 4

Pa_844 = table2array ( table ( [ load (1 ,22) load (1 ,23) load (1 ,24) ] ) ) ;

Pp_844 = table2array ( table ( [ load (1 ,25) load (1 ,26) load (1 ,27) ] ) ) ;

Pn_844 = table2array ( table ( [ load (1 ,28) load (1 ,29) load (1 ,30) ] ) ) ;

% Load 5

Pa_840 = table2array ( table ( [ load (1 ,31) load (1 ,32) load (1 ,33) ] ) ) ;

Pp_840 = table2array ( table ( [ load (1 ,34) load (1 ,35) load (1 ,36) ] ) ) ;

Pn_840 = table2array ( table ( [ load (1 ,37) load (1 ,38) load (1 ,39) ] ) ) ;

% load ( idx )

simIn ( idx ) = Simulink . SimulationInput (model ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’ SimulationMode ’ , ’ Accelerator ’ ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’SW850_816 ’ ,SW850_816) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’SW818_820 ’ ,SW818_820) ;
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simIn ( idx ) = simIn ( idx ) . setVariable ( ’SW832_858 ’ ,SW832_858) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’SW834_842 ’ ,SW834_842) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’SW836_862 ’ ,SW836_862) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pa_824_828 ’ ,Pa_824_828 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pp_824_828 ’ ,Pp_824_828 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pn_824_828 ’ ,Pn_824_828 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pa_820_822 ’ ,Pa_820_822 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pp_820_822 ’ ,Pp_820_822 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pn_820_822 ’ ,Pn_820_822 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pa_858_834 ’ ,Pa_858_834 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pp_858_834 ’ ,Pp_858_834 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pn_858_834 ’ ,Pn_858_834 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pa_844 ’ ,Pa_844 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pp_844 ’ ,Pp_844 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pn_844 ’ ,Pn_844 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pa_840 ’ ,Pa_840 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pp_840 ’ ,Pp_840 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pn_840 ’ ,Pn_840 ) ;

counter=counter+1;

end

simOut = parsim ( simIn , ’ShowSimulationManager ’ , ’ o f f ’ ) ;

for round=1:simu_number

PMU802=[simOut ( round ) . logsout {34 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 1 } .

Values .Data ( 1 , : ) ] ; %1

PMU806=[simOut ( round ) . logsout {35 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 2 } .

Values .Data ( 1 , : ) ] ; %2

PMU808=[simOut ( round ) . logsout {36 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 3 } .

Values .Data ( 1 , : ) ] ; %3

PMU810=[simOut ( round ) . logsout {37 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 4 } .

Values .Data ( 1 , : ) ] ; %4

PMU812=[simOut ( round ) . logsout {38 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 5 } .

Values .Data ( 1 , : ) ] ; %5

PMU814=[simOut ( round ) . logsout {39 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 6 } .
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Values .Data ( 1 , : ) ] ; %6

PMU850=[simOut ( round ) . logsout {57 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {24 } .

Values .Data ( 1 , : ) ] ; %7

PMU816=[simOut ( round ) . logsout {40 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 7 } .

Values .Data ( 1 , : ) ] ; %8

PMU818=[simOut ( round ) . logsout {41 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 8 } .

Values .Data ( 1 , : ) ] ; %9

PMU820=[simOut ( round ) . logsout {42 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 9 } .

Values .Data ( 1 , : ) ] ; %10

PMU822=[simOut ( round ) . logsout {43 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {10 } .

Values .Data ( 1 , : ) ] ; %11

PMU824=[simOut ( round ) . logsout {44 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {11 } .

Values .Data ( 1 , : ) ] ; %12

PMU826=[simOut ( round ) . logsout {45 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {12 } .

Values .Data ( 1 , : ) ] ; %13

PMU828=[simOut ( round ) . logsout {46 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {13 } .

Values .Data ( 1 , : ) ] ; %14

PMU830=[simOut ( round ) . logsout {47 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {14 } .

Values .Data ( 1 , : ) ] ; %15

PMU854=[simOut ( round ) . logsout {59 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {26 } .

Values .Data ( 1 , : ) ] ; %16

PMU856=[simOut ( round ) . logsout {60 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {27 } .

Values .Data ( 1 , : ) ] ; %17

PMU852=[simOut ( round ) . logsout {58 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {25 } .

Values .Data ( 1 , : ) ] ; %18

PMU832=[simOut ( round ) . logsout {48 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {15 } .

Values .Data ( 1 , : ) ] ; %19

PMU888=[simOut ( round ) . logsout {65 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {32 } .

Values .Data ( 1 , : ) ] ; %20

PMU890=[simOut ( round ) . logsout {66 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {33 } .

Values .Data ( 1 , : ) ] ; %21

PMU858=[simOut ( round ) . logsout {61 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {28 } .

Values .Data ( 1 , : ) ] ; %22

PMU864=[simOut ( round ) . logsout {64 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {31 } .

Values .Data ( 1 , : ) ] ; %23

PMU834=[simOut ( round ) . logsout {49 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {16 } .

Values .Data ( 1 , : ) ] ; %24

PMU842=[simOut ( round ) . logsout {53 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {20 } .

Values .Data ( 1 , : ) ] ; %25

PMU844=[simOut ( round ) . logsout {54 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {21 } .

Values .Data ( 1 , : ) ] ; %26
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PMU846=[simOut ( round ) . logsout {55 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {22 } .

Values .Data ( 1 , : ) ] ; %27

PMU848=[simOut ( round ) . logsout {56 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {23 } .

Values .Data ( 1 , : ) ] ; %28

PMU860=[simOut ( round ) . logsout {62 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {29 } .

Values .Data ( 1 , : ) ] ; %29

PMU836=[simOut ( round ) . logsout {50 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {17 } .

Values .Data ( 1 , : ) ] ; %30

PMU840=[simOut ( round ) . logsout {52 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {19 } .

Values .Data ( 1 , : ) ] ; %31

PMU862=[simOut ( round ) . logsout {63 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {30 } .

Values .Data ( 1 , : ) ] ; %32

PMU838=[simOut ( round ) . logsout {51 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {18 } .

Values .Data ( 1 , : ) ] ; %33

PMU=[PMU802;PMU806;PMU808;PMU810;PMU812;PMU814;PMU850;PMU816;PMU818;PMU820;

PMU822;PMU824;PMU826;PMU828;PMU830;PMU854;PMU856;PMU852;PMU832;PMU888;

PMU890;PMU858;PMU864;PMU834;PMU842;PMU844;PMU846;PMU848;PMU860;PMU836;

PMU840;PMU862;PMU838] ;

file_name = [ Dirocry , ’\ ’ ,num2str (num) , ’ . csv ’ ] ;

writematrix (PMU, file_name ) ; % After 2019a

%csvwrite ( file_name ,PMU) ;

num=num+1;

end

end

i f rem( len ,simu_number )~=0

% i f the remainder is not zero , run a 2nd time

clear simIn

for idx =1:( len−counter+1) % 2nd running

filename=[ folder_name ,T, ’\Topology ’ ,num2str ( topology ) , ’\ ’ ,num2str ( counter ) , ’ .

csv ’ ] ;

SW=readmatrix ( filename , ’Range ’ , ’A2:E2 ’ ) ;

load=readmatrix ( filename , ’Range ’ , ’F2 :AR2 ’ ) ;

%SW=csvread ( filename ,1 ,0 , [ ’A2 . . E2 ’ ] ) ; %dlmread

%load=csvread ( filename ,1 ,0 , [ ’F2 . .AR2 ’ ] ) ;

%load=load (2 ,2:40) ;

% switch

SW850_816 = SW(1 ,1) ;

SW818_820 = SW(1 ,2) ;

SW832_858 = SW(1 ,3) ;

102



SW834_842 = SW(1 ,4) ;

SW836_862 = SW(1 ,5) ;

% Load 1

Pa_824_828 = table2array ( table ( [ load (1 ,1) load (1 ,2) load (1 ,3) ] ) ) ;

Pp_824_828 = table2array ( table ( [ load (1 ,4) load (1 ,5) load (1 ,6) ] ) ) ;

Pn_824_828 = table2array ( table ( [ load (1 ,7) load (1 ,8) load (1 ,9) ] ) ) ;

% Load 2

Pa_820_822 = table2array ( table ( [ load (1 ,10) ] ) ) ;

Pp_820_822 = table2array ( table ( [ load (1 ,11) ] ) ) ;

Pn_820_822 = table2array ( table ( [ load (1 ,12) ] ) ) ;

% Load 3

Pa_858_834 = table2array ( table ( [ load (1 ,13) load (1 ,14) load (1 ,15) ] ) ) ;

Pp_858_834 = table2array ( table ( [ load (1 ,16) load (1 ,17) load (1 ,18) ] ) ) ;

Pn_858_834 = table2array ( table ( [ load (1 ,19) load (1 ,20) load (1 ,21) ] ) ) ;

% Load 4

Pa_844 = table2array ( table ( [ load (1 ,22) load (1 ,23) load (1 ,24) ] ) ) ;

Pp_844 = table2array ( table ( [ load (1 ,25) load (1 ,26) load (1 ,27) ] ) ) ;

Pn_844 = table2array ( table ( [ load (1 ,28) load (1 ,29) load (1 ,30) ] ) ) ;

% Load 5

Pa_840 = table2array ( table ( [ load (1 ,31) load (1 ,32) load (1 ,33) ] ) ) ;

Pp_840 = table2array ( table ( [ load (1 ,34) load (1 ,35) load (1 ,36) ] ) ) ;

Pn_840 = table2array ( table ( [ load (1 ,37) load (1 ,38) load (1 ,39) ] ) ) ;

simIn ( idx ) = Simulink . SimulationInput (model ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’ SimulationMode ’ , ’ Accelerator ’ ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’SW850_816 ’ , SW850_816) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’SW818_820 ’ , SW818_820) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’SW832_858 ’ , SW832_858) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’SW834_842 ’ , SW834_842) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’SW836_862 ’ , SW836_862) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pa_824_828 ’ , Pa_824_828 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pp_824_828 ’ , Pp_824_828 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pn_824_828 ’ , Pn_824_828 ) ;
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simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pa_820_822 ’ , Pa_820_822 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pp_820_822 ’ , Pp_820_822 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pn_820_822 ’ , Pn_820_822 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pa_858_834 ’ , Pa_858_834 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pp_858_834 ’ , Pp_858_834 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pn_858_834 ’ , Pn_858_834 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pa_844 ’ , Pa_844 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pp_844 ’ , Pp_844 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pn_844 ’ , Pn_844 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pa_840 ’ , Pa_840 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pp_840 ’ , Pp_840 ) ;

simIn ( idx ) = simIn ( idx ) . setVariable ( ’Pn_840 ’ , Pn_840 ) ;

counter=counter+1;

end

simOut = parsim ( simIn , ’ShowSimulationManager ’ , ’ o f f ’ ) ;

for round=1:( len−num+1)

PMU802=[simOut ( round ) . logsout {34 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 1 } .

Values .Data ( 1 , : ) ] ; %1

PMU806=[simOut ( round ) . logsout {35 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 2 } .

Values .Data ( 1 , : ) ] ; %2

PMU808=[simOut ( round ) . logsout {36 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 3 } .

Values .Data ( 1 , : ) ] ; %3

PMU810=[simOut ( round ) . logsout {37 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 4 } .

Values .Data ( 1 , : ) ] ; %4

PMU812=[simOut ( round ) . logsout {38 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 5 } .

Values .Data ( 1 , : ) ] ; %5

PMU814=[simOut ( round ) . logsout {39 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 6 } .

Values .Data ( 1 , : ) ] ; %6

PMU850=[simOut ( round ) . logsout {57 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {24 } .

Values .Data ( 1 , : ) ] ; %7

PMU816=[simOut ( round ) . logsout {40 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 7 } .

Values .Data ( 1 , : ) ] ; %8

PMU818=[simOut ( round ) . logsout {41 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 8 } .

Values .Data ( 1 , : ) ] ; %9

PMU820=[simOut ( round ) . logsout {42 } . Values .Data ( 1 , : ) simOut ( round ) . logsout { 9 } .
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Values .Data ( 1 , : ) ] ; %10

PMU822=[simOut ( round ) . logsout {43 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {10 } .

Values .Data ( 1 , : ) ] ; %11

PMU824=[simOut ( round ) . logsout {44 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {11 } .

Values .Data ( 1 , : ) ] ; %12

PMU826=[simOut ( round ) . logsout {45 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {12 } .

Values .Data ( 1 , : ) ] ; %13

PMU828=[simOut ( round ) . logsout {46 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {13 } .

Values .Data ( 1 , : ) ] ; %14

PMU830=[simOut ( round ) . logsout {47 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {14 } .

Values .Data ( 1 , : ) ] ; %15

PMU854=[simOut ( round ) . logsout {59 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {26 } .

Values .Data ( 1 , : ) ] ; %16

PMU856=[simOut ( round ) . logsout {60 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {27 } .

Values .Data ( 1 , : ) ] ; %17

PMU852=[simOut ( round ) . logsout {58 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {25 } .

Values .Data ( 1 , : ) ] ; %18

PMU832=[simOut ( round ) . logsout {48 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {15 } .

Values .Data ( 1 , : ) ] ; %19

PMU888=[simOut ( round ) . logsout {65 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {32 } .

Values .Data ( 1 , : ) ] ; %20

PMU890=[simOut ( round ) . logsout {66 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {33 } .

Values .Data ( 1 , : ) ] ; %21

PMU858=[simOut ( round ) . logsout {61 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {28 } .

Values .Data ( 1 , : ) ] ; %22

PMU864=[simOut ( round ) . logsout {64 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {31 } .

Values .Data ( 1 , : ) ] ; %23

PMU834=[simOut ( round ) . logsout {49 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {16 } .

Values .Data ( 1 , : ) ] ; %24

PMU842=[simOut ( round ) . logsout {53 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {20 } .

Values .Data ( 1 , : ) ] ; %25

PMU844=[simOut ( round ) . logsout {54 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {21 } .

Values .Data ( 1 , : ) ] ; %26

PMU846=[simOut ( round ) . logsout {55 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {22 } .

Values .Data ( 1 , : ) ] ; %27

PMU848=[simOut ( round ) . logsout {56 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {23 } .

Values .Data ( 1 , : ) ] ; %28

PMU860=[simOut ( round ) . logsout {62 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {29 } .

Values .Data ( 1 , : ) ] ; %29

PMU836=[simOut ( round ) . logsout {50 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {17 } .

Values .Data ( 1 , : ) ] ; %30
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PMU840=[simOut ( round ) . logsout {52 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {19 } .

Values .Data ( 1 , : ) ] ; %31

PMU862=[simOut ( round ) . logsout {63 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {30 } .

Values .Data ( 1 , : ) ] ; %32

PMU838=[simOut ( round ) . logsout {51 } . Values .Data ( 1 , : ) simOut ( round ) . logsout {18 } .

Values .Data ( 1 , : ) ] ; %33

PMU=[PMU802;PMU806;PMU808;PMU810;PMU812;PMU814;PMU850;PMU816;PMU818;PMU820;

PMU822;PMU824;PMU826;PMU828;PMU830;PMU854;PMU856;PMU852;PMU832;PMU888;

PMU890;PMU858;PMU864;PMU834;PMU842;PMU844;PMU846;PMU848;PMU860;PMU836;

PMU840;PMU862;PMU838] ;

file_name = [ Dirocry , ’\ ’ ,num2str (num) , ’ . csv ’ ] ;

writematrix (PMU, file_name ) ;

%csvwrite ( file_name ,PMU) ;

num=num+1;

end

end

end

Because the voltage and current have already been converted into per

unit forms when building the Simulink model, the next step is to convert

the angle values measured by PMUs into "radian/π". So, the values would

be shrunk between -1 to 1, which be suited for neural convolution. The

code to generate the PMU data into per unit values is shows below:

% Save data into one .mat f i l e

for topology=3:11

l i s t =dir ( [ folder_name , ’\PMUresults ’ , ’\Topology ’ ,num2str ( topology ) , ’ \∗ . csv ’ ] ) ;

len=length ( l i s t ) ;

for counter=1: len

filename=[ folder_name , ’ PMUresults\Topology ’ ,num2str ( topology ) , ’\ ’ ,num2str ( counter )

, ’ . csv ’ ] ;

Data { topology−2,counter }= readmatrix ( filename , ’Range ’ , ’A1:L33 ’ ) ;

end

end

save Data .mat

% Save in sorted folders

clear
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load ( ’Data .mat ’ )

for topology=3:11

Dirocry = [ folder_name , ’ PMU_PUresults\ ’ ,num2str ( topology−2) , ’\ ’ ] ;

mkdir ( Dirocry ) ;

l i s t =dir ( [ folder_name , ’\PMUresults ’ , ’\Topology ’ ,num2str ( topology ) , ’ \∗ . csv ’ ] ) ;

len=length ( l i s t ) ;

for counter=1: len

file_name=[Dirocry ,num2str ( counter ) , ’ . csv ’ ] ;

rad=Data { topology−2,counter } ( : , [4 ,5 ,6 ,10 ,11 ,12] )∗pi/180;

% Convert to radian

rad=rad/pi ; % le t rad between −1 and 1

voltage=Data { topology−2,counter } ( : , 1 : 3 ) ;

current=Data { topology−2,counter } ( : , 7 : 9 ) ;

save_data=[ voltage rad ( : , [ 1 ,2 ,3 ] ) current rad ( : , [ 4 ,5 ,6 ] ) ] ;

writematrix ( save_data , file_name ) ;

end

end
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Appendix C: Convolutional Neural Network Code

C.1 Sorting Data

For CNN part, the code bellow was ran in Pycharm which used Python

language.

#Sorting the data into three fo lders

#Copy the data into a new fo lder f i r s t

import os , random, shuti l

def moveFile_Train ( f i l eD i r ) :

pathDir = os . l i s t d i r ( f i l eD i r )

#Read the or ig ina l path of the f i l e

filenumber=len ( pathDir )

rate=0.8 #Proport ion of extracted f i l e s

picknumber=int ( filenumber∗rate ) #Extract f i l e s in proportion

sample = random.sample ( pathDir , picknumber )

#Randomly se lec t a proport ional number of f i l e s

print ( sample )

for name in sample :

shuti l .move( f i l eD i r+ ’/ ’+name, tarDir+ ’/ ’+name)

#shut i l . copyf i le ( f i l eD i r +name, tarDir+name)

return

def moveFile_Test ( f i l eD i r ) :

pathDir = os . l i s t d i r ( f i l eD i r )

filenumber = len ( pathDir )

rate = 0.5

picknumber = int ( filenumber ∗ rate )

sample = random.sample ( pathDir , picknumber )

print ( sample )

for name in sample :

shuti l .move( f i l eD i r+ ’/ ’+name, tarDir+ ’/ ’+name)

return

def moveFile_Val ( f i l eD i r ) :

pathDir = os . l i s t d i r ( f i l eD i r )

filenumber = len ( pathDir )
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rate = 1

picknumber = int ( filenumber ∗ rate )

sample = random.sample ( pathDir , picknumber )

print ( sample )

for name in sample :

shuti l .move( f i l eD i r+ ’/ ’+name, tarDir+ ’/ ’+name)

return

i f __name__ == ’ __main__ ’ :

for num in range (1 ,10) :

path_Test= ’G:/34NODES_RUNNING/DataFolder/CNN/Test/ ’+str (num)

path_Train = ’G:/34NODES_RUNNING/DataFolder/CNN/Train/ ’ + str (num)

path_Val = ’G:/34NODES_RUNNING/DataFolder/CNN/Val/ ’ + str (num)

try :

os .mkdir ( path_Train )

os .mkdir ( path_Test )

os .mkdir ( path_Val )

except OSError :

print ( " Creation of the directory %s fa i led " % path_Train )

print ( " Creation of the directory %s fa i led " % path_Test )

print ( " Creation of the directory %s fa i led " % path_Val )

else :

print ( " Successfully created the directory %s " % path_Train )

print ( " Successfully created the directory %s " % path_Test )

print ( " Successfully created the directory %s " % path_Val )

for num in range (1 ,10) :

f i l eD i r = "G:/34NODES_RUNNING/DataFolder/CNN/PMU_PUresults/"+str (num) #Source

f i l e fo lder path

tarDir = ’G:/34NODES_RUNNING/DataFolder/CNN/Train/ ’+str (num) #Move to

new fo lder path

moveFile_Train ( f i l eD i r ) #move to Train fo lder

for num in range (1 ,10) :

f i l eD i r = "G:/34NODES_RUNNING/DataFolder/CNN/PMU_PUresults/"+str (num)

tarDir = ’G:/34NODES_RUNNING/DataFolder/CNN/Test/ ’+str (num)

moveFile_Test ( f i l eD i r ) #move to Test fo lder

for num in range (1 ,10) :

f i l eD i r = "G:/34NODES_RUNNING/DataFolder/CNN/PMU_PUresults/"+str (num)
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tarDir = ’G:/34NODES_RUNNING/DataFolder/CNN/Val/ ’+str (num)

moveFile_Val ( f i l eD i r ) #move to Val fo lder

C.2 Calculate the mean and standard deviation

import os

from glob import glob

import numpy as np

import pandas as pd

def mean_std ( root ) :

class_dir = glob ( os . path . jo in ( root , ’∗/ ’ ) )

for dir in class_dir :

print ( dir , os . path . i sd i r ( dir ) )

total_data = [ ]

for dir in class_dir :

this_data = glob ( os . path . jo in ( dir , ’ ∗ . csv ’ ) )

total_data += this_data

print ( len ( total_data ) )

batch_size = 100

num_batch = len ( total_data ) // batch_size

batch_means = [ ]

batch_vars = [ ]

print ( ’num_batch = ’ , num_batch )

for i_batch in range (num_batch ) :

print ( ’ processing batch ’ , i_batch )

batch_data = None

start = i_batch ∗ batch_size

end = ( i_batch + 1) ∗ batch_size

for f i l e in total_data [ start : end ] :

#pr int ( ’ processing f i l e ’ , f i l e )

df = pd. read_csv ( f i l e , header=None )

im = df . to_numpy ( ) #Convert <pandas . core . frame .DataFrame> to <numpy.

ndarray>
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i f batch_data is None:

batch_data = im

else :

batch_data = np. vstack ( ( batch_data , im) )

#pr int ( np . shape ( batch_data ) )

#pr in t ( np . shape ( batch_data ) )

batch_mean0 = np.mean( batch_data )

batch_var0 = np. var ( batch_data )

batch_means .append (batch_mean0 )

batch_vars .append ( batch_var0 )

batch_means = np. stack ( batch_means , axis=0)

batch_vars = np. stack ( batch_vars , axis=0)

print ( batch_means . shape )

print ( batch_vars . shape )

mean = np.mean(batch_means , axis=0)

var = np.mean( batch_vars , axis=0) + np. var ( batch_means , axis=0)

print ( ’mean = ’ , mean)

print ( ’ var = ’ , var )

print ( ’ std = ’ , np. sqrt ( var ) )

return mean, np. sqrt ( var )

C.3 Two Layer Net

import torch .nn as nn

import torch .nn. functional as F

import numpy as np

# Weight i n i t i a l i z a t i o n

def weight_init (m) :

i f isinstance (m, nn. Linear ) :

s ize = m. weight . s ize ( )

fan_out = size [0 ] # number of rows

fan_in = size [1 ] # number of columns
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variance = np. sqrt (2.0/( fan_in + fan_out ) )

m. weight . data . normal_ (0.0 , variance )

e l i f isinstance (m, nn.Conv2d) :

k1, k2 = m. kernel_size

# in_c = m. in_channels

out_c = m. out_channels

n = k1 ∗ k2 ∗ out_c

variance = np. sqrt (2.0 / n)

m. weight . data . normal_ (0.0 , variance )

def num_flat_features ( x ) :

s ize = x . size ( ) [ 1 : ] # a l l dimensions except the batch dimension

num_features = 1

for s in size :

num_features ∗= s

return num_features

class TwoLayerConvNet (nn.Module ) :

def __ in i t__ ( s e l f ) :

super ( TwoLayerConvNet , s e l f ) . __ in i t__ ( )

s e l f . conv1 = nn.Conv2d(1 , 15, kernel_size =(5 , 3) , str ide =(1 , 3) )

s e l f . conv_bn1 = nn.BatchNorm2d(15)

se l f . conv2 = nn.Conv2d(15 , 20, kernel_size =3)

se l f . conv_bn2 = nn.BatchNorm2d(20)

se l f . conv2_drop = nn.Dropout2d ( )

s e l f . fc1 = nn. Linear (20∗27∗2, 100)

se l f . fc_bn1 = nn.BatchNorm1d(100)

se l f . fc2 = nn. Linear (100 , 9)

weight_init ( s e l f . fc1 )

weight_init ( s e l f . fc2 )

def forward ( se l f , x ) :

x = F. relu (F.max_pool2d ( se l f . conv_bn1 ( se l f . conv1 ( x ) ) , kernel_size =(1 , 1) ) )

# pr int ( x . shape )

x = F. relu (F.max_pool2d ( se l f . conv2_drop ( se l f . conv_bn2 ( se l f . conv2 ( x ) ) ) , kernel_size

=(1 ,1) ) )

# pr int ( x . shape )

x = x . view(−1, num_flat_features ( x ) )

x = F. relu ( se l f . fc_bn1 ( se l f . fc1 ( x ) ) ) # used to be F . tanh

x = F. dropout ( x , training=se l f . training )
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x = se l f . fc2 ( x )

return F. log_softmax ( x , dim=1)

C.4 Pandas Dataset Folder

Here a function is customized for the data input of the heatmap.

from torchvision . datasets import DatasetFolder

import torch

import numpy as np

class PandasDatasetFolder ( DatasetFolder ) :

def __getitem__ ( se l f , index ) :

path , target = se l f . samples [ index ]

sample = se l f . loader ( path , header=None )

# sample = np . as_matrix ( sample )

sample=sample . to_numpy ( )

sample=sample [np. newaxis , . . . ]

# pr int ( np . shape ( sample ) )

# pr in t ( ’ Sample Type : ’ , type ( sample ) )

sample = torch . from_numpy( sample )

# pr int ( sample )

i f s e l f . transform is not None:

sample = se l f . transform ( sample )

i f s e l f . target_transform is not None:

target = se l f . target_transform ( target )

return sample , target

C.5 Main Code

C.5.1 Cuda Parameters

no_cuda = False

is_cuda = not no_cuda and torch .cuda . is_avai lable ( )

print ( " is_cuda = " , is_cuda )
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kwargs = { ’num_workers ’ : 4 , ’pin_memory ’ : True } i f is_cuda else { }

C.5.2 Load Data

data_path = ’G:\\XXXXXXXXXXXXXXXXXX’

data_file_names = [ ’ Train ’ , ’ Val ’ , ’ Test ’ ]

data_sets = glob . glob ( data_path )

for sub_data_path in data_sets :

train_path = os . path . jo in ( sub_data_path , ’ Train ’ )

# ==== Get Mean STD ====

print ( train_path )

mean, std = mean_std ( train_path ) ## Commended before get MEAN std

currentloader = pd. read_csv

for data_ f i l e in data_file_names :

data_fi le_path = os . path . jo in ( data_path , data_ f i l e )

i f os . path . i sd i r ( data_fi le_path ) and data_ f i l e == ’ Train ’ :

# train_dataset = DatasetFolder ( root=data_fi le_path , loader=pd . read_csv ,

extensions= ’csv ’ )

train_dataset = PandasDatasetFolder ( root=data_file_path , loader=currentloader ,

extensions= ’ csv ’ )

e l i f os . path . i sd i r ( data_fi le_path ) and data_ f i l e == ’ Val ’ :

# val_dataset = DatasetFolder ( root=data_fi le_path , loader=pd . read_csv , extensions

= ’csv ’ , transform=train_transform )

val_dataset = PandasDatasetFolder ( root=data_file_path , loader=currentloader ,

extensions= ’ csv ’ )

e l i f os . path . i sd i r ( data_fi le_path ) and data_ f i l e == ’ Test ’ :

# test_dataset = DatasetFolder ( root=data_fi le_path , loader=pd . read_csv , extensions

= ’csv ’ , transform=train_transform )

test_dataset = PandasDatasetFolder ( root=data_file_path , loader=currentloader ,

extensions= ’ csv ’ )

e lse :

raise RuntimeError ( ’No data f i l e s found . ’ )

train_loader = data_uti ls .DataLoader ( dataset=train_dataset , batch_size=64, shuff le=True ,

∗∗kwargs )

val_loader = data_uti ls .DataLoader ( dataset=val_dataset , batch_size=32, shuff le=False , ∗∗
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kwargs )

test_loader = data_uti ls .DataLoader ( dataset=test_dataset , batch_size=32, shuff le=False , ∗∗

kwargs )

enumerate ( train_loader )

C.5.3 Train Function

def train ( epoch , print_period=100) :

model . train ( )

# pr int ( train_loader )

for batch_idx , ( data , target ) in enumerate ( train_loader ) :

# convert data to tensor

# data = torch . from_numpy ( data . to_numpy ( ) )

# normalize

data −= mean

data /= std

# pr int ( data . size ( ) )

i f is_cuda :

data , target = data .cuda ( ) , target . cuda ( )

data = data . type ( ’ torch . cuda . FloatTensor ’ )

target = target . type ( ’ torch . cuda . LongTensor ’ )

e lse :

data = data . type ( ’ torch . DoubleTensor ’ )

target = target . type ( ’ torch . LongTensor ’ )

# data = data [ : , :2 , : , : ]

target = target . squeeze ( )

optimizer . zero_grad ( )

output = model ( data )

with torch . enable_grad ( ) :

loss = F. cross_entropy ( output , target ) #F . n l l _ l oss ( output , target )

loss .backward ( )

optimizer . step ( )

i f batch_idx % print_period == 0:

print ( ’ Train Epoch : { } [ { } / { } ] \ tLoss : { : . 6 f } ’ . format (

epoch , batch_idx ∗ len ( data ) , len ( train_loader . dataset ) ,

loss . data ) )
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print ( ’ val idat ion : ’ )

val_target_labels , val_pred_labels , val_acc = val idate (model , val_loader , is_cuda=True )

return val_target_labels , val_pred_labels , val_acc

C.5.4 Model and Parameter Setting

model = TwoLayerConvNet ( )

model = model . f l oa t ( )

i f is_cuda :

model . cuda ( )

optimizer = optim .Adam(model . parameters ( ) , l r =1e−4, weight_decay=0.00001)

scheduler = StepLR ( optimizer , step_size=28, gamma=0.1)

num_epock = 1

print_period = 10

best_model_file_name = type (model ) . __name__ + ’ _best_checkpoint . p ickle ’

C.5.5 Training Loop

best_val_acc = 0

for epoch in range (num_epock) :

print ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )

optimizer . zero_grad ( )

val_target_labels , val_pred_labels , val_pred_acc = train ( epoch , print_period=

print_period )

scheduler . step ( )

i f val_pred_acc > best_val_acc :

best_val_acc = val_pred_acc

torch . save ( { ’ s tate_dic t ’ :model . state_dict ( ) ,

’ pred_labels ’ : val_pred_labels ,

’ target_ labels ’ : val_target_labels ,

’ epoch ’ : epoch ,

’ best_val_pred_acc ’ : val_pred_acc ,
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’ class2idx ’ : train_dataset . class_to_idx ,

’Mean_STD ’ : np. array ( [mean, std ] ) ,

’Data_path ’ : data_path } , best_model_file_name )

print ( ’ Current best_val_acc : { : . 4 f } ’ . format ( best_val_acc ) )

C.5.6 Training Loop

best_point = torch . load ( best_model_file_name )

model . load_state_dict ( best_point [ ’ s ta te_dic t ’ ] )

test_target_ labels , test_pred_labels , test_acc = val idate (model , test_loader , is_cuda=

is_cuda )

print ( ’ Best val idat ion acc :\ t ’ , best_val_acc )

print ( ’ Predicted test acc\t : ’ , test_acc )

t = time . strft ime ( "%Y%m%d_%H−%M−%S" , time . localtime ( ) )

exist_check_point = os . path . i s f i l e ( best_model_file_name )

i f exist_check_point :

new_check_point_name = type (model ) . __name__ + ’ best_chekpoint ’ + ’ { : . 2 f } ’ . format (

best_val_acc ) + ’ _ ’ + t + ’ . p ickle ’

os . rename ( best_model_file_name , new_check_point_name )
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