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Abstract: Electric distribution utilities are required to continuously deliver reliable electric power to their customers. Regulatory
utility commissions often practise reward and penalty schemes to regulate reliability performance of utility companies annually
with respect to a desired performance targets. However, the conventional regulation procedures are commonly found based on
the customer-based standard reliability indices, which are not able to discern the service characteristics behind the electric
meters and, hence, fail to holistically characterise the actual impact of electricity interruption. This study proposes a new method
to evaluate the load-based reliability indices in power distribution systems using advanced metering infrastructure data.
Furthermore, the authors introduce a reward/penalty regulation scheme for utility regulators to provide a reliability oversight
using the proposed load-based reliability metrics. The new load-based reliability metric and the reward/penalty scheme
proposed bring about superior advantages as the distribution grids become further complex with a high penetration of
distributed energy resources and enabled microgrid flexibilities. Numerical analyses on different settings with and without
microgrid considerations reveal the applicability and effectiveness of the proposed approach in real-world scenarios.

 Nomenclature
ASIDI′ forecasted value of ASIDI
α annual severe weather impact factor for a regional

distribution system
BPF benefit of increasing feeder reliability to avoid PF (in

$)
BRP benefit of customer reliability premium (in $)
Cc cost of compensation for long outages
CI composite index for evaluating feeder reliability
Di interruption duration of outage event i
ENS forecasted value of annual energy not supplied

(ENS) to the feeder
ENS′ equivalent ENS to the feeder considering the impacts

of microgrid
ENSf ENS to the electric vehicles caused by failing to

charge or swap the batteries
ENSi ENS to the feeder during outage event i
El effective load control of non-critical loads during

outages
G effective generation supplied to the customer during

outages
i index of an interruption event
IEAR interrupted energy assessment rate (estimated cost

per unserved kWh during outage event i)
IR incentive rate of utility regulation
Li interrupted load in kVA for the outage event i
LT total connected load served
N time steps of load forecasting
PF feeder penalty factor
PF′ forecasted value of PF
S annual energy supplied to electric vehicles by

rescheduling the service
t index of time intervals (1 to T)
TU0, TL0 upper and lower limits of ASIDI′
W1, W2, W3 weight factors for ASIFI, ASIDI, and ASSDI,

respectively

x, x∧ real and forecasted value of interrupted load

1 Introduction
1.1 Problem description

Electric utilities are continuously seeking solutions to engender a
more reliable, cost-effective and interactive power distribution
systems through advanced technologies and modernisation efforts
supported by the regulatory commissions [1]. Smart grid
technologies are deployed to accomplish this modernisation
mission and meet the intensified sustainability goals with smart
meters, smart appliances, electric vehicles (EVs) and distributed
energy resources (DERs), among others [2]. Advanced metering
infrastructure (AMI), which consists of smart meters,
communication technologies, meter data management system
(MDMS), and the associated software/hardware platforms, enables
active interactions between the smart grid components. Each end
user connected to a node and associated with a smart meter in an
AMI system is characterised as a customer regardless of its load
scale. Despite the undeniable advantages, smart meters generate
data with high velocity and variety resulting in several challenges
ranging from tremendous volumes of data to be processed and
complicated AMI architectures that are not easy and practical to
develop [3].

In a hierarchical AMI architecture, data is automatically
collected from customer meters and communicated to the utility
MDMS through data access points [4, 5]. AMI implementation
enables visualisation of the distribution system assets, operating
states, and prevailing conditions including outage events [6]. It also
enables more accurate reliability assessments by updating and
uploading outage information to the utility database and analytic
platforms [7, 8]. Optimal set of maintenance strategies can be
adopted based on the outage information corresponding to the
utility-controlled territory to improve the system reliability
performance requirements [9]. Most utility commissions solely
track the system average interruption frequency index (SAIFI) and
system average interruption duration index (SAIDI) metrics to

IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 15, pp. 3647-3654
© The Institution of Engineering and Technology 2018

3647



evaluate system reliability and reward/penalise the electric utilities
accordingly depending on their performance with regard to the
desired targets and requirements. Reward and penalty schemes
(RPSs) are, hence, designed to regulate the performance of the
electric distribution companies based on the reported reliability
performance metrics [10–13]. However, the aforementioned two
customer-based reliability indices are dominated by residential
customers [14]. For instance, based on the data provided by the
local utility, the US District of Columbia features 99% penetration
of AMI, residential customers in this area consume 17% of total
load but accounting for 90% of the AMI customers. Some utilities
have started migrating to a new decision paradigm by including the
momentary average interruption frequency index (MAIFI) as part
of their reliability performance evaluations but load-based
reliability indices such as average system interruption frequency
index (ASIFI) and average system interruption duration index
(ASIDI) are still not widely used. The challenge to wide adoption
of such load-based reliability metrics is acquiring information on
the quantity of the interrupted load, which could be more
challenging than the number of interrupted customers [14]. With
the increasing trend in penetration of distributed renewable ERs
(DERs), local storage units, and demand response programmes and
load control mechanisms, real-time assessment of interrupted loads
becomes more and more challenging than ever before. As a result,
reliability regulatory policies should also go through a
transformation to meet such emerging challenges in future.

1.2 Literature survey

In exploring the existing literature, an automated reliability
assessment mechanism is designed in [15] to calculate both
customer-based and load-based key reliability indices, where pre-
outage kVA is utilised to quantitatively assess the ASIFI and
ASIDI metrics. In [16], the annual average number of connected
loads is utilised to calculate the ASIDI metric and to design the
RPS for electric utilities. However, the ASIDI metrics calculated in
[15, 16] are unable to reflect load profile variations and DER
spatio-temporal impacts. The SAIFI and SAIDI indices of
reliability are modified in [17] to incorporate the priority and
corresponding penalty factor (PF) for interrupted load of each
customer when direct load controls of all consumers are enabled.
However, the energy not supplied (ENS) during an outage event
still needs to be assessed to account for the amount and duration of
load interruptions. New metrics have been proposed to assess the
reliability of microgrids in [18] and to optimise the DER allocation
in [19], through value-based reliability planning approaches. The
simulation results based on load point average failure rate and
average outage duration in [20] are different from the true values
captured during interruptions. Several techniques for analysing
utility long-term investment plans are suggested in [21, 22], where
the reliability indices and utility regulations are overlooked. A
multi-agent system architecture for virtual power plants has been
introduced to manage smart grids and forecast energy demand in
[23], where a detailed model for low-level management of virtual
power plants is introduced. With a lower load forecast error, virtual
power plants are shown to achieve a decentralised intelligent
management and communication with other agents through

negotiation. Load forecasting (LF) at the feeder level and even the
consumer level through AMI data is also approached in [24–28],
where numerical results indicated acceptable short-term LF (STLF)
performance with appropriate load aggregation levels. Note that the
aforementioned references neither evaluated the predictability of
load-based reliability indices nor calculated the load-based
reliability metrics considering high penetration of DERs. Currently,
public literature available specifically on studying the RPS for
distribution utilities considering the impacts of microgrids is scarce
and research efforts must be focused to address this emerging topic
of interest from the perspective of a utility regulator.

1.3 Contributions

The contributions of this paper are three-fold: (i) to explore the
applicability of the load-based reliability metrics and calculate such
reliability indices of ASIDI using the AMI-captured load data and
LF techniques; (ii) to introduce a new reliability index and an
AMI-assisted reliability assessment architecture to incorporate the
impacts of microgrids; (iii) to propose a novel RPS to regulate the
reliability performance of distribution utilities based on specific
feeder characteristics and via employing the proposed load-based
reliability metrics.

This paper is organised as follows. In Section 2, we present the
proposed AMI-assisted architecture for assessing the suggested
load-based reliability metrics in power distribution systems. A new
reliability regulation mechanism from the utility regulator
perspective using the proposed load-based reliability metrics is
introduced in Section 3. Numerical case studies based on both
traditional and the proposed RPS schemes are conducted in Section
4, where the impacts of microgrids and DER penetrations are
extensively explored. Moreover, finally comes the conclusions in
Section 5 that summarises this paper contributions.

2 AMI-assisted reliability assessment
Hourly customer load profiles for several years are usually
uploaded and stored to MDMS by utilities through an AMI
platform. Hence, we regard the mean total aggregated load as the
average load, LT, in contrast with the transformer rated kVA, which
has been the common practise in the past. In this section, hourly
load data from smart meters is used to calculate the ASIDI. The
missing data of smart meters is treated as 0 kW.

2.1 Calculation of ASIDI using AMI data

Different outage events are characterised with different interruption
durations and impose different system-wide impacts. Fig. 1
illustrates the distribution of interruption frequency and number of
interrupted customers for the District of Columbia distribution
system from 2011 to 2015. As one can see from Fig. 1, interruption
duration and number of interrupted customers are highly
correlated: 91.5% of the average outage durations are <6 h and
affect 79.0% of the total interrupted customers. Hence, majority of
the outage events can be forecasted through an STLF mechanism
with the lead time of 1 h to 1 day ahead. The main uncorrelated
observations are related to the long interruption duration outages
with a large number of customers affected but with lower
frequency. Medium-term LF (MTLF) can be applied for outage
events that last more than 24 h with relatively large number of
affected customers. 
 

Algorithm 1: Algorithm for calculating ENS

1: Import the hourly customer load profiles of the feeder for 5
years as well as the yearly outage report. Calculate the average
load LT.
2: Calculate the outage duration Di for each outage event i.
3: For each outage event i, if Di ≤ 1, consider the pre-outage load
as the interrupted load; otherwise, aggregate the load profiles of
interrupted customers, forecast N-step ahead interrupted load.
4: Calculate ENSi for the outage event i.
5: Sum ENSi to get the ENS.

Fig. 1  Interruption frequency against restoration time (in percentage), and
number of customers interrupted against restoration time (in percentage).
Daily mean restoration time is utilised and the correlation coefficient is
0.95
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We propose Algorithm 1 to calculate the annual ENS of the
feeders. Historical customer load profiles are aggregated to predict
the hourly interrupted load during each outage event considering
different chronological and weather conditions. Then, ENS metrics
during outage events (ENSi) are calculated considering outage start
and end times, and then added up to evaluate ENS. In step 3, if
outage duration is ≤1 h, we use pre-outage load profile as the load
does not change much in an hour and load forecast with resolution
of <1 h is hard to achieve in this model. In case where the
interruption duration is longer than 1 h, we modified the neural
networks (NNs) in [29] to forecast the interrupted load. LF time
horizons vary from 1 h to 1 week and we forecast N as EndHour–
StartHour + 1 h-ahead load. When N is ≤24 h, we use STLF;
otherwise, MTLF is applied. The interrupted load profiles are
aggregated utilising the AMI data. Then, the Levenberg–Marquardt
approach with 22 hidden neurons are used to train the model. The
ASIDI index of reliability is calculated as in the equation below:

ASIDI = ENS
LT

(1)

We use mean absolute percentage error (MAPE) to measure the
forecast performance [25]. The MAPE is defined as the ratio of the
absolute forecast errors and the actual observed values

MAPE(x, x∧) = 100
T ∑

t = 1

T x(t) − x∧(t)
x(t) (2)

where x = {x(1), …, x(T)} are actual values, x∧ = {x∧(1), …, x∧(T)}
are corresponding forecast values, and x(t) is time series.

Two feeders in the US District of Columbia are used here to
demonstrate the effectiveness of the proposed algorithm. The
anonymous load profile data and historical outage reports of the
two feeders are provided by the Potomac Electric Power Company.
Both feeders are overhead lines feeding residential loads and a few
commercial customers. Feeder 1 supplies 549 customers with an
average load demand of 1.47 MW, whereas Feeder 2 supplies 1476
customers with the average load demand of 2.46 MW. We used 3
years historical load data from June 2013 to May 2016, where the
first 2 years of the data were used for training and estimating the
model parameters, and observations from the past year were
utilised for model evaluation and performance verification. We also
employed historical temperature data of the Ronald Reagan

Washington National Airport (DCA) from the National Oceanic
and Atmospheric Administration [30].

We randomly select subsets of customers with different load
scales from the two feeders, aggregate their load profiles, and
sample ten times for each load scale to estimate the LF error of the
interrupted load. The average MAPE for the forecasted interrupted
load by STLF and MTLF techniques are demonstrated in Figs. 2
and 3, respectively. The MAPE corresponding to the forecasted
interrupted load increases when the aggregated load decreases and
interruption duration increases. According to Fig. 2, the average
MAPE for a load scale of 50 kW is higher than 10% and even
unstable when interruption lasts more than 4 h. However, the
average MAPE of interrupted load with the load scale of more than
500 kW is relatively low and does not increase much even when
the interruption lasts for several days as shown in Fig. 3. The
MAPE of the forecasted load decreases through load aggregation,
which is commonly expected in the industry practise. However, we
demonstrate here the performance of the proposed Algorithm 1 in
this application: the MAPE associated with the ASIDI metric is
small when the feeder has medium or low reliability level. The
reason lies in the facts that (i) the MAPE associated with a large
amount of interrupted loads is low and less sensitive to interruption
duration and (ii) the contributions of the severe outage events
dominate the reliability index of ASIDI. The MAPE associated
with the ASIDI further decreases as LF error is approximated by a
normal probability distribution with mean value of 0. When the
feeder is more reliable, less load will be interrupted and, hence, the
ASIDI metric becomes smaller while the corresponding MAPE is
relatively large. 

2.2 Proposed load-based reliability metrics considering
penetration of DERs and EVs

Microgrids can improve the reliability performance of the power
distribution systems. Load interruptions can be reduced through an
effective allocation and utilisation of the distributed generation
supply and direct load control mechanisms. Despite its advantages,
it also brings about difficult-to-manage challenges for public utility
commissions (PUCs) to collect the high-resolution AMI data since
many microgrids are owned by the customers and/or third parties.
The utility may not have access to AMI data from the microgrids
as utility commissions only regulate utility assets. In this paper, we
introduce observation point to reflect the scope of data collection
from the feeder. We define a smart meter as observable if the
information behind the smart meter can be acquired. Consequently,
a utility-owned microgrid is observable as the utility can gather all
the information behind the microgrid substation meter. A single
meter connected to a node is unobservable as there is no meter
behind. If a third party or residential facility owns a microgrid and
they are willing to share information behind the meter with the
utility company, this smart meter connected to the microgrid is
observable too. Hence, the distribution system reliability
assessment will terminate on where the utility observation points
end, which is in contrast with the traditional view of to the point
where the utility assets are covered. The equivalent ENS of each
feeder is calculated as follows in the equation below:

ENS′ = ENS − El − G (3)

where ENS is the forecasted energy demand of the interrupted
customers, El is the effective load control applied to non-critical
loads, and G are the loads partially supplied via DERs which are
measured via the connected production meter. The procedure to
calculate ENS′ is presented in Fig. 4. For each feeder, we first
check if each interrupted node is observable. If it is observable, we
acquire the load profile, measured generation, and effective load
control corresponding to the load being served at that node. If it is
unobservable, we only gather the load profile from the connected
smart meter. We then aggregate the load profiles of the customers
that are interrupted during the same time interval, then forecast the
load demand, and eventually calculate ENS as introduced earlier in
Section 2.1. 

Fig. 2  Average MAPE on the STLF results against the forecast lead time
of 1, 2, ..., 24 h ahead. Each line represents the aggregated load scale

 

Fig. 3  Average MAPE on the MTLF results against the forecast lead time
of 1, 2, ..., 7 days ahead. Each line represents the aggregated load scale
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We assume EVs are charged under plug-in or battery swapping
mode and their daily charging curves are stable. An aggregator is
assumed to be responsible for charging the EVs so as to meet the
customer demand and also to coordinate the operation of the
energy management system under the plug-in mode. When an
interruption occurs and is recovered before the EV departure time,
the state of charge (SOC) of the EV battery is metered: if it is less
than the expected SOC at the EV departure time, the difference
between expected SOC and captured SOC actually reflects the
ENS to the customer ENSf and can be assessed by the aggregator.
If the aggregator charges the EV battery to expected SOC after the
interruption but before the EV scheduled departure time, we regard
the EV load as not interrupted. The extra energy supplied to the
load demand during the interval between the restoration time and
the EV departure time is the difference between the actual energy
supplied to the load and the scheduled energy supplied in that time
interval and is actually amounted equal to the shifted load. Under
battery swapping mode, EVs can utilise the battery swapping
stations (BSSs) connected to adjacent feeders without interruption,
if customers are well informed and the batteries are not already
depleted (i.e. the BSS connected to the interrupted feeder can
supply power to the feeder). We assume the EVs belonged to the
interrupted feeder can swap their batteries with a discount; hence,
the battery swapping process can be recorded and the increased
SOC of their batteries can be regarded as the shifted load. Note that
the EV load interruption ENSf caused by a failure in battery
swapping, leading to a travel delay, can be acquired via post-
surveys.

We define the EV service interruption S as the energy
interrupted but re-dispatched via aggregators or BSSs. Rather than
a direct outage, EV service interruption can lead to an intensified
operational cost or customer inconvenience indirectly. With the low
penetration of EVs, the utility may jointly forecast the customer
and the EV loads, and, hence, the shifted load S can be regarded as
the effective generation G during the interruption to calculate
ENS′. With the high penetration of EVs, the utility may forecast

the load and schedule the controllable loads separately, and
therefore the total interrupted energy will be represented as
ENS′ + ENSf. We still use pre-outage served (connected) kVA to
calculate the ASIFI index of reliability, as introduced in (4). The
concept and its calculation procedure are detailed in [15] and
reflect the instantaneous load interruption. ASIDI in [31] is
adjusted in order to reflect sustained interruptions and incorporate
microgrid impacts as shown in (5). We propose the average system
service disruption index (ASSDI) as a new load-based reliability
index to reflect service interruption to flexible loads such as EVs,
as introduced in the equation below:

ASIFI = ∑Li
LT

(4)

ASIDI = ENS′ + ENSf
LT

(5)

ASSDI = S
LT

(6)

2.3 Proposed AMI architecture

Fig. 5 demonstrates the proposed AMI architecture: a hierarchical
system including smart meters, neighbourhood area networks
(NANs), and the local area networks (LAN) within the utility
domain. In contrast with the conventional AMI structures through
which meter data is directly uploaded to MDMS, the proposed
architecture contains two inter-connected loops: (i) the online loop
represented by red lines is mainly focusing on grid monitoring and
power flow controls. Since the main concerns for the LAN are
system operational states and power flow constraints, this online
computational platform can swiftly classify and process the
measurements and upload the necessary information. The online
loop normally transmits data every 2 s to 5 min; (ii) the offline loop
represented by blue lines store all data in the NAN-level database.
Having evaluated the ENS′ index associated with the
neighbourhood feeders as shown in Fig. 4, NAN then calculates the
three introduced load-based reliability indices using (4)–(6) and
upload the results to LAN. The LAN-level billing system then
maps different reliability performance levels of system feeders and
analyses the overall reliability of the distribution system. The
utility can also send the locational marginal prices (LMPs) to the
NAN and calculate the electricity pricings at the NAN-level billing
system. 

This new architecture is suitable for prosumer-oriented smart
grids with highly densed penetration of DERs and can be employed
even by electric utilities with high-speed data transfer
requirements. The primary advantages of the suggested AMI
architecture can be summarised as follows:

• It preserves and protects customer privacy in the physical layer
of communication network systems. The customer load profiles
are actually to be stored in the NAN networks and will not
require to be uploaded into a centralised data centre.

• It shrinks the volume of data uploaded into the utility MDMS
platform. With the envisioned online and offline computation
loops, the measured data is classified and processed before an
upload process starts. All the information can be recorded in the
NAN and, hence, the communication capacity requirement from
NAN to LAN significantly decreases.

• It brings about potentials for more accurate load forecast and
feeder health diagnosis with local weather and temperature
information as well as feeder-level data analytics.

• It offers opportunities for fast and efficient energy management
in distribution systems. With the suggested online computation
loop, wide area networks can acquire robust real-time system
operational conditions from distribution feeders. Through a
system-wide optimal power flow mechanism, the feeder-level
energy management signal can be sent to NANs. As NANs
gather smart meters data and monitor the feeder in real time,

Fig. 4  Implementation procedure of the proposed offline reliability
assessment loop

 

Fig. 5  Logical view of the proposed advanced meter infrastructure
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they can determine the operation points of each DER and load
control signals for each connected node.

3 Proposed utility regulation model
A distribution utility owns, monitors, and controls hundreds of
feeders, the reliability performance of which is closely dependent
on the reliability characteristics of its feeders. We classify feeders
of the distribution system based on different reliability
requirements, and we propose a mechanism for their regulation via
contracts between the distribution utilities and the PUCs. The
suggested utility regulation model accommodates the new load-
based reliability metrics using the AMI data and captures well the
utility requirements under high penetration of DERs and
microgrid-enabled flexibilities. Details of the proposed regulation
model are presented as follows.

3.1 Feeder PF

For the distribution feeders with AMI infrastructure installed, the
ASIFI, ASIDI, and ASSDI metrics can be assessed using AMI
data. We propose the PF in (7) that integrates the aforementioned
reliability indices and can be utilised to penalise the utilities if they
do not meet the reliability performance requirements

PF = IR(1 − α)(CI − 1) (7)

where IR is the incentive rate to reflect the penalty and reward
characteristics and α is the impact factor driven by the annual
severe weather conditions and their impact on the distribution
system. We introduce a composite index (CI) to represent the
difference between the expected and the realised reliability
performance

CI = W1
ASIFI
ASIFI0

+ W2
ASIDI
ASIDI0

+ W3
ASSDI
ASSDI0

(8)

where W1, W2, and W3 are the weight factors for each reliability
metric assigned by the distribution utility experts and they add to
one. ASIFI0, ASIDI0, and ASSDI0 are expected values set by utility
regulators. If CI − 1 < 0, the utility meets the customer
requirements and provides extra high-quality reliability services
and, hence, it should be rewarded. By improving the grid reliability
performance, the CI degrades from CI1 to CI2 and the benefit for
avoiding the PF could be quantified as follows:

BPF = IR(CI1 − CI2) (9)

A value-based reliability planning approach together with the
Monte Carlo simulation can be employed to locate the minimum-
cost solution of a feeder for an improved system reliability. The
marginal price (MP) for improving the system reliability can be
then found as IR. The reliability indices at this optimal point are set
as the expected values in (8). The weights can be set based on the
feeder characteristics. For instance, W1 can be higher if it feeds
sensitive and critical loads (e.g. hospital or military services) that
can be extensively affected by a momentary interruption.

3.2 Suggested regulation procedure

If ASIDI′ is the estimated ASIDI metric for a feeder using
Algorithm 1, we define the lower bound TL0 as the ASIDI′ value
that the PUC will employ for evaluating the ASIDI performance of
the feeder with an acceptable MAPE. We use the upper bound TU0
of ASIDI′ as the minimum reliability requirement of the feeder.
Although feeder outage events vary annually depending on the
frequency and scale of the events as well as many other factors
driven by weather and cyber conditions, the customer outage
duration should be limited within a tolerable time period depending
on the types of customers (industrial, agricultural, commercials,
residential etc.). For instance, we assume 12 h of outage duration
for residential customers.

The suggested regulation criteria for feeders are tabulated in
Table 1. If ASIDI′ < TL0, we regard the feeder to have a high
reliability performance and since the feeder-level CI is difficult to
calculate, the utility is not penalised but instead is offered a fixed
monetary reward. When the annual ASIDI′ ≥ TL0, CI can be
quantified with acceptable MAPE and the PF is utilised to regulate
the feeder reliability performance. If ASIDI′ ≥ TU0, the utility is
penalised with regard to PF, and customers with interruption
duration greater than TU0 should be compensated accordingly. The
compensation Cc to be provided by the utility can be acquired via
the post-event customer surveys. 

To the best of our knowledge and inquiries from the industry
partners, this effort is the first to propose criteria to regulate the
reliability performance of the distribution utilities based on the
feeder characteristics in contrast with the conventional regulation
policies that are based on the annual utility performance over the
entire network under control. Through the proposed framework,
the decision makers can realise the geographical reliability
performance of the feeders by classifying them based on their
different structures. The proposed framework can also discern
different feeder reliability requirements by setting the regulation
parameters in (7) and (8) based on the feeder characteristics. As we
propose to employ the load-based reliability indices to regulate the
distribution utilities, this new utility regulation paradigm can, in
turn, drive utility companies toward value-based reliability
improvement now and in future.

It is worth mentioning that sometimes during interruptions, the
utility may be willing to swap some loads to the adjacent feeder,
especially when there are parallel radial feeders with tie-lines
between the feeders [32]. We still count the load swapped to other
adjacent feeders as the load of the original feeder. The smart meters
will not count the swapped load repetitively and the feeder-level
utility regulation method does not change.

3.3 Reliability premium

As the electric utility makes extra effort to avoid power
interruptions for specific types of customers in the feeder, we
define the customer reliability premium to account for such
improvements. The power G supplied to the customers during
feeder-level interruptions can be acquired and the customer
reliability premium is calculated using the equation below:

BRP = IEAR × G (10)

where interrupted energy assessment rate (IEAR) is the estimated
cost per unserved kWh during each outage event and is typically
driven by several factors including the outage time, outage
duration, and the load types. IEAR can be assessed using the
customer surveys [33].

If the microgrid is a non-utility asset but observable, the
customers owning the microgrid should not pay any BRP to the
utility and can get benefit BPF by helping the utility avoid the
penalties. When the DERs in the microgrid are on the outage, the
utility can supply the customers through the available backup
generations and charge the customers equal to BRP. Under such
circumstances, if the utility fails to supply the customers during
DER interruptions, the utility does not have the liability or the
liability is limited to the segment of energy already contracted
between the utility and the customers. If this microgrid is
unobservable, meaning it refuses to share the reliability
information and to be regulated by the utility, then the utility only
needs to provide the contracted capacity to the customers and
evaluate the ENS based on the data from smart meters connected to

Table 1 Proposed utility regulation settings
ASIDI′ Reliability level Reward or penalty
< TL0 high fixed PF
TL0 ≤ ASIDI′ < TU0 medium PF
≥ TU0 low PF and Cc

 

IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 15, pp. 3647-3654
© The Institution of Engineering and Technology 2018

3651



the microgrid. In the case of an outage behind the meter, the third-
party company who owns the asset should be responsible for the
interruption loss and is not counted as a reliability issue for the
utility. In the case of an outage in front of the observation point, the
utility should be charged for the power that should have supplied to
the customers behind the meter, even if the third party has built a
microgrid to avoid the outage. In such scenarios, customers or the
third party will not get the benefit BPF.

The proposed regulation scheme with observation points will
encourage distribution utilities to regulate the reliability of all
feeders within their jurisdictions regardless of the ownership of the
assets. With the extensive deployment of non-utility microgrids in
a foreseeable future, the proposed utility regulation approach can
still evaluate the geographical reliability performance indices by
encouraging the utilities to integrate non-utility assets.

Since the electricity customers with reliability premiums are
charged with the electricity price of IEAR instead of the normal
price, some customers may be willing to maintain only the critical
portion of the loads or they may participate in the utility demand
response or load control programmes during outages. In such
scenarios, the SAIFI and SAIDI metrics of the feeder cannot be
assessed as the customers are partially supplied. However, the
customer loads can be classified into different priority levels if they
are observable. Instead of supplying power to a specific type of
customers, critical loads will be supplied with a high priority
during an outage event. Hence, the proposed RPS can best
compromise different load types to ensure an acceptable reliability
performance of the feeder for all customers.

It is worth noting that electric utilities with AMI facilities store
the interruption data in the MDMS, where detailed information
about the outage causes is available. The IEEE Std. 1366 (2012)
recommends that ‘it may be advantageous to calculate the
reliability indices without planned interruptions in order to review
performance during unplanned events’. Hence, one can exclude
such special circumstances (e.g. scheduled interruptions, outage of
customer-owned facilities etc.) when calculating the system
reliability indices.

4 Numerical results
This section compares the performance of the traditional regulatory
approaches by PUCs and the one proposed in this paper with and
without microgrid considerations.

4.1 Utility regulation methods without microgrid

A Californian utility in [21] is regulated via a traditional RPS.
When the SAIDI metric of reliability changes from 53 to 65 min,
neither a penalty nor a reward is assessed. The utility will be
penalised with $1 million per 1 min SAIDI above 65 min up to $18
million at 83 min and above. It will be rewarded with $1 million
per 1 min SAIDI below 53 min and up to $18 million at 35 min and
below.

We regulate utilities using AMI data by first evaluating the
ASIDI′ for each feeder. To examine the effectiveness of the
suggested ASIDI′, we simulate interruptions on two feeders
introduced in Section 2.1. The ASIDI′ calculated using the LF
approach is compared with the simulated ASIDI. Outage reports
from 2011 to 2015 are employed to simulate the interruptions and
outages are moved into one certain week beginning with 9 October
2015 when no outage was reported. Other information such as
outage start time, outage duration, and total customers affected are
kept unchanged. Interrupted customers are randomly selected and
no microgrid was assumed for the two feeders. Algorithm 1 is
applied on the two feeders, the results of which are illustrated in
Figs. 6a and b. Compared to the cases where annual average load,
pre-week average load, and pre-outage hourly load are employed,
the MAPEs corresponding to the suggested ASIDI using Algorithm
1 are low and stable. We also simulate the interruptions on the two
feeders during other time intervals when outages did not actually
happen. The results demonstrate that the MAPEs of the ASIDI
metric using Algorithm 1 is ≤5% when the reliability index ASIDI
is >3 h. It can be seen that the MAPEs do not decrease much when
ASIDI keeps increasing since there are cases where customers with
a small load aggregation suffer a long-time interruption during
major event days of the year. When no feeder-level outage happens
(e.g. in 2015), the MAPE corresponding to the ASIDI can reach
10%. 

We also evaluate the reliability of each feeder using the
proposed utility regulation policy and settings in Table 1. If
TL0 = 3 h, the calculated error for ASIDI′ of the two feeders will
not exceed 5%, while if TL0 = 0.5 h, it will reach a maximum of
10%. The TL0 and related MAPE will not significantly change due
to the load aggregation effect which is commonly noted. However,
in order to estimate an acceptable level of MAPE and TL0 for
specific feeders, the utility can still import the outage reports and
simulate the outage events during the time periods that
interruptions did not actually happen. If TL0 = 0.5 and TU0 = 12
are set for Feeder 1, then the utility will be charged with PF and Cc
in 2011 and 2012, will pay PF in 2013 and 2014 and will be
rewarded a fixed PF in 2015. We assume the fixed PF is $15,000.
One can set 0 < α < 1 to reduce the penalty imposed to the utility
in 2011 and 2012 and set α = 0 during other years.

4.2 Impacts of microgrid on the regulation market

The outage events on Feeder 1 in year 2014 are simulated and the
regulatory impacts of microgrids are investigated. The microgrid
model utilised for the studied feeder is illustrated in Fig. 7, where it
includes a 200 kW PV system, a total of 830 EVs in the feeder with
EV penetration level of 30%. We assume the BSS has enough
capacity and EV batteries will be swapped immediately as the
customers arrive. Hourly energy consumption of swapping
batteries is derived from [34]. The BSS reserves 20% of the
capacity and can be discharged to 5% of its capacity during
interruptions. Moreover, the BSS is assumed to have 1 h delay to
return to service after discharging to its minimum capacity. Hourly
LMP from PJM market [35] is used to calculate the BSS-scheduled
charge/discharge curve in a grid-connected mode. The static switch
is designed to open when there is a fault between the main supply
(utility) and load 1, and therefore the PV, the BSS, and load points
2 and 3 will operate in an islanding mode. The following five
scenarios are discussed considering the feeder-level interruptions
from 16:31 to 18:20 of the day:

• Scenario 1: uses simulated reliability indices in 2014 without
microgrid considerations.

Fig. 6  Prediction error of the ASIDI index for both feeders
(a) Simulated ASIDI for Feeder 1 from 2011 to 2015 are 32.63, 16.09, 2.44, 3.64, and
0.31 (h), (b) Simulated ASIDI for Feeder 2 from 2011 to 2015 are 9.66, 13.62, 2.55,
4.49, and 0.67 (h)
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• Scenario 2: assumes the BSS has 450 kWh storage capacity and
150 kW charging rate; the BSS continues to serve EVs during
the 1.82 h feeder-level interruption until 5% of its capacity is
reached.

• Scenario 3: assumes the BSS has the same capacity as scenario
2 but supplies energy to the feeder during an interruption; EVs
are informed to swap their batteries at other BSSs.

• Scenario 4: assumes the BSS has 1.8 MWh storage capacity and
600 kW charging rate; EVs are informed to swap their batteries
at other BSSs; demand response and direct load control are
employed to recover the 200 kW non-critical load during the
sustained interruptions.

• Scenario 5: the BSS and load control remain same as scenario 4,
except that the transformer connected to the utility has a
capacity limit of 2.3 MW.

Table 2 provides the reliability metrics and the regulation
results under the five scenarios above, where the parameters are set
as W1 = 0.3, W2 = 0.6, W3 = 0.1, ASIFI0 = 1, ASIDI0 = 2.5, and
ASSDI0 = 2.5. The IR is assumed to be $20,000. The reliability
indices in scenario 1 are acquired from the simulation results in
Fig. 6. Reliability indices in scenarios 2 and 3 are estimated based
on those in scenario 1 by considering different operational
strategies of the microgrid during the feeder-level interruptions.
The PF in scenario 2 is observed higher than that in scenario 1 as
some EVs are not served by the BSS and, hence, contribute to the
increase in ASIDI. In scenario 3, PF is decreased by supplying the
feeder with the BSS energy. Although swapping batteries in other
feeders can lead to an inconvenience to some EV customers, the
consequence of rearranging the battery swapping is far less than
the load interruption. The remaining SOC of the BSS is 272 kWh
in both scenarios 2 and 3 when the interruption is initiated. 

Scenarios 4 and 5 are investigated to evaluate the reliability
performance of the feeder with different BSS and substation
capacity levels. The hourly charge and discharge rates of the BSS
in its grid-connected mode are demonstrated in Fig. 8. The BSS
dispatch signal is scheduled by day-ahead energy market and
updated hourly within an hour-ahead schedule. At the time when
the interruption happens, the SOC of BSS is 882 and 639 kWh in
scenarios 4 and 5, respectively. The SOC of the BSS in scenario 4
is higher than that in scenario 3 due to the increase in the BSS
capacity, resulting in a decrease in PF compared with scenario 3. If
the microgrid is owned by a third party, the BPF paid by the utility
to the third party will increase to $4776. Fig. 8 illustrates that the
BSS discharges to supply the grid from 11:00 to 15:00 in scenario
5 since the substation capacity is less than the feeder summer peak

load of 2.57 MW. So the remaining SOC of the BSS in scenario 5
is less than that in scenario 4 at 16:31 when the interruption
happens. As a result, the PF in scenario 5 is observed higher than
that in scenario 4. 

It can be observed that the proposed utility regulation scheme
can well reflect the influence of the microgrid control strategy and
component capacity on the feeder reliability performance. The
difference between the PF and PF′ calculated using ASIDI′ is
generally small and can be accepted by the utility. The PF′ values
are also calculated based on the pre-outage BSS dispatch schedule
and, hence, do not include the error in the forecasted S compared
with the actual realised S. However, this has been shown to have a
minimum impact on PF′ as we propose to penalise the service
disruption less than load interruption.

5 Conclusions
The smart grid revolutionary paradigm with grid-scale deployment
and integration of the AMI and DERs has been and will continue
changing the reliability structure of power distribution systems and,
hence, new methods and regulatory schemes are yet to be
developed to evaluate system reliability performance over time.
Different from the traditional customer-oriented reliability indices,
this paper first introduced a new load-based reliability metric, so
called ASSDI, using AMI data. Through several case studies using
real data, we showed in this paper that the calculation of feeder-
level ASIDI using AMI data can be quite accurately accomplished
with low MAPEs. Second, a new AMI architecture was proposed
for distribution utilities to adopt the new reliability metrics in
future smart grids. Third, a new utility regulation scheme based on
the proposed load-based reliability indices was suggested to
facilitate the reliability analysis of the power distribution systems
with different feeder reliability requirements and microgrid
penetration levels. Numerical case studies demonstrated that the
proposed utility reward/penalty scheme can be applied in real-
world energy markets to evaluate the feeder reliability performance
and integrate microgrids regardless of the different possible
ownership structures.
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