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Abstract—Power grid operation continuously undergoes state
transitions caused by internal and external uncertainties, e.g.,
equipment failures and weather-driven faults, among others. This
prompts an observation of different types of waveforms at the
measurement points (substations) in power systems. Modern power
systems utilize phasor measurement units (PMUs) and intelligent
electronic devices embedded with PMU functionality to capture
the corresponding peculiarities through synchrophasor measure-
ments. However, existing PMU devices are equipped with only
one synchrophasor estimation algorithm (SEA) and are, thus,
not always robust to handle different types of signals across the
network. This article proposes a PMU-embedded framework that
ensures real-time grid surveillance and potentially enables adaptive
selection of preinstalled SEAs in the PMU. Therefore, it ensures
high-fidelity measurements at all times and irrespective of the input
signals. Our proposed framework consists of: 1) a pseudocontin-
uous quadrature wavelet transform which generates the featured
scalograms and 2) a convolutional neural network for event clas-
sification based on the extracted features in the scalograms. Our
experiments demonstrate that the proposed framework achieves
high classification accuracy on multiple types of prevailing events
in power grids, through which an enhanced grid-scale situational
awareness in real time can be realized.

Index Terms—Convolutional neural network (CNN), feature
extraction, phasor measurement unit (PMU), waveform
classification, wavelet transform (WT).

I. INTRODUCTION

W ITH the widespread deployment of synchrophasor tech-
nology in modern power grids, system monitoring and

control settings have been revolutionized into a new era with
high-resolution measurements [1]–[3]. Synchrophasor measure-
ments, captured across the network via phasor measurement
units (PMUs), have transformed many applications, e.g., power
system model validation, state estimation, dynamic stability, on-
line monitoring, protection and control functions, and postevent

Manuscript received July 8, 2019; revised October 25, 2019; accepted
December 1, 2019. Date of publication December 9, 2019; date of current
version March 17, 2020. Paper 2019-PSEC-0732.R1, presented at the 2019
IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA,
Sep. 29–Oct. 3, and approved for publication in the IEEE TRANSACTIONS ON

INDUSTRY APPLICATIONS by the Power Systems Engineering Committee of the
IEEE Industry Applications Society. This work was supported in part by the
U.S. Department of Energy Office of Electricity and in part by the Municipal
Electric Power Association of Virginia on American Public Power Association’s
Demonstration of Energy & Efficiency Development program. (Corresponding
author: Payman Dehghanian.)

The authors are with the Department of Electrical and Computer Engineering,
The George Washington University, Washington, DC 20052 USA (e-mail:
shiyuan1225@gwu.edu; payman@gwu.edu; lili1986@email.gwu.edu).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIA.2019.2958786

analysis [4], [5]. IEEE standard C37.118.1-2011 [6] has defined
the PMU expected outputs, i.e., magnitude, phase angle, fre-
quency, and rate of change of frequency (ROCOF), and the cor-
responding desirable accuracy. These outputs are obtained from
synchrophasor estimation algorithms (SEAs) which are primar-
ily driven by mathematical approximations. In most cases, and
irrespective of the focused application, marketplace PMUs are
typically furnished with only one SEA tool, each unleashing dis-
tinctive advantages and limitations, solely valid to one or a few
certain applications [7]–[9]. Typically, the waveforms fed into
PMUs have variant behaviors; for instance, phasor magnitudes
and phase angles go through step changes during faults, and the
waveform measurements could be noisy. Besides, unbalanced
load, voltage surge or sag, harmonics, and frequency drift are
also common phenomena in electrical power networks [10]–
[12]. In dealing with the above-mentioned conditions, dynamic
SEAs based on time-domain signal processing techniques were
applied. Some research efforts have proposed a single PMU
equipped with only one sophisticated SEA, which is deemed to
respond to various prevailing conditions [13]–[15]. Laboratory
tests and field observations have revealed how inefficient the
PMU measurements could be, if this “one-size-fits-all” SEA is
applied to capture both static and dynamic features and pecu-
liarities [16]–[18]. To meet the growing demand for high-speed,
low-latency, and yet absolutely accurate measurements from
PMU sensors, a more efficient mechanism that provides online
event detection and assists in selecting the right SEA at the right
time is desired.

In pursuit of mechanisms for power grid event detection,
a power quality-based event detection approach is proposed
in [19], which utilizes an advanced metering infrastructure
(AMI) network in the smart grid and is featured with a fault toler-
ant capability. However, this approach requires a grid-scale AMI
installation. A multiple-event analysis approach though cluster-
based sparse coding method is presented in [20], which achieves
a wide-area situational awareness. However, this multiple-event
detection scheme is only examined on three outage scenarios
(generator trip, load trip, and line trip). A grid-scale situa-
tional awareness approach using sparse unmixing technique is
introduced in [21], which only focuses on detecting the “trip
events” and takes seconds to achieve the adequate results. A
more advanced real-time event detection mechanism using en-
ergy similarity measure (ESM) on wide-area measurements is
proposed in [22], which can swiftly detect multiple types of
events across the power grid. However, this mechanism requires
full observation of the grid through PMU measurements at each
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bus, and depends on reliable communication channels. A method
for detection and classification of multiple events through prin-
cipal component analysis (PCA) of frequency measurements is
proposed in [23], which only detects loss of generation and/or
loads. To the authors’ best knowledge, there is no scheme
available in the literature that can handle multiple event detection
and classification, particularly by relying only on the original
waveforms captured on a single measurement point.

With the development of artificial intelligence (AI), many
AI-based approaches have been proposed for adaptive sensing
and control in power systems and for improved resilience [24],
[25]. It has been shown that the machine learning techniques,
such as neural network-based reinforcement learning (RL) [26],
[27], can successfully handle the nonlinearity and unknown
dynamics of the systems [28], [29]. In [30], a deep RL method
is proposed for nonlinear derivation of control strategies for
unmolded power systems. An RL-based maximum power point
tracking (MPPT) algorithm is presented in [31] to optimize
the rotor speed and electrical power of the permanent-magnet
synchronous generators (PMSG). An RL-based optimal control
for hybrid energy storage systems is introduced in [32]. Also,
RL can be used for detecting false data injection attacks in power
grid’s voltage control systems [33]. A cooperative RL algorithm
is proposed in [34] that solves the economic dispatch problem
in microgrids with distributed energy resources.

Motivated by the successful implementation of machine
learning techniques in power systems and the fact that transitions
of events in the power grid could be revealed through waveform
patterns in the voltage and current signals [35], [36], we propose
a novel online surveillance framework that classifies various
events. In the proposed framework, the waveform patterns and
signatures are extracted via a time–frequency domain analytic—
wavelet transform (WT) [37], [38]. Built on the WT-extracted
features, i.e., scalograms, a machine learning mechanism based
on convolutional neural networks (CNNs) [39], [40] is employed
to detect and classify the events through pattern recognition pro-
cess. This article’s main contributions are highlighted as follows.

1) We propose a pseudocontinuous quadrature WT (PCQ-
WT) that effectively captures the power waveform features
corresponding to different events.

2) A CNN mechanism is developed to classify the scalograms
generated by PCQ-WT, achieving a high event classifica-
tion accuracy (92.84 ± 1.20%) for 12 distinct modes of
grid prevailing conditions.

3) The combination algorithms of the two steps process the
input signals in real time (2.24 ± 0.54 ms), which leaves a
large time margin to the subsequent SEA modules within
PMUs to function.

4) The proposed framework shares the exact same input
signals of the market-place PMUs with no additional
investment; thus, it is an economically viable technology
to be embedded within the existing PMUs.

This article is organized as follows. Section II introduces a
background on continuous WTs (CWTs) and the pattern classi-
fication through CNNs. Section III details the proposed online
surveillance framework, consisting of: 1) feature extraction from

voltage and current signals via PCQ-WT and 2) event classifica-
tion via CNN. Case studies and experiment results are analyzed
in Section IV, and the conclusions are presented in Section V.

II. BACKGROUNDS AND MOTIVATIONS

A. Power Waveform Modeling

To solve a classification problem, a mathematical representa-
tion of signals in power grid is needed. The three-phase time-
domain sinusoidal signals fed into the PMU can be represented
by the following:

xph(t) = Aph(t) cos

(
2π

∫ t

0
F (τ)dτ + φph(t)

)
(1)

where xph(t) is a one-dimensional (1-D) waveform measured
from each phase; Aph(t), F (τ), and φph(t) are the instanta-
neous magnitude, fundamental frequency, and phase angle in
each phase, respectively. During both transient and steady-state
operations, the waveform in each phase can be expressed by a
summation of different orders of harmonic components. Thus,
the actual waveform in each phase is

xph(t) =

H∑
h=1

Aph,h(t) cos

(
2π

∫ t

0
Fh(τ)dτ + φph,h(t)

)

(2)
where h is the order of harmonics, and H is the maximum order
of harmonics of interest. In a particular grid operation condition,
different values of Aph,h(t), Fh(τ), and φph,h(t) will appear
in the three-phase power signal, which lead to different pat-
terns and peculiarities. Therefore, an event can be detected and
classified accordingly. To simplify the time-domain sinusoidal
signal analysis without acquiring the rotating reference frame
in Park transformation [41], Clarke transformation is applied to
convert the three-phase signal from ABC to αβ-frame [42] by
the following equations:

xαβ(t) = xα(t) + jxβ(t) (3)

and

[
xα(t)

xβ(t)

]
=

⎡
⎢⎢⎣

2
3

−1
3

−1
3

0

√
3

3
−
√

3
3

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xA(t)

xB(t)

xC(t)

⎤
⎥⎥⎦ . (4)

Since power waveforms contain different frequency compo-
nents, multiresolution waveform analysis techniques are suitable
to extract the features, i.e., amplitude, frequency, and phase
angle. The most commonly used technique is short-time Fourier
transform (STFT) [43], [44] and wavelet analysis [45]–[47].
Studies show that the STFT has a higher computational bur-
den, which leads to a lower time resolution than the wavelet
analysis in time–frequency domain [48], [49]. Also, comparing
the spectrograms in Fig. 1(a) and (b) with the scalograms of
WT in Fig. 1(c)–(f), it can be seen that STFT outperforms CWT
in frequency accuracy, while CWT provides more conspicuous
results for feature extraction. Therefore, wavelet analysis is
chosen as the mathematical tool of interest for feature extraction
and online waveform monitoring.
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Fig. 1. Comparison of the STFT versus Morlet CWT versus DB4 CWT during:
(a), (c), and (e) 2 Hz frequency jump; (b), (d), and (f) 40◦ phase jump. (a) STFT
(b) STFT (c) Morlet (d) Morlet (e) DB4 (f) DB4.

B. CWT and Pseudo-CWT (PCWT)

The WT is obtained by computing the cross correlation be-
tween the signal of interestxαβ(t) and designated wavelets. This
process is defined as follows:

Xαβ(ω|a, b) = 1√|a|

∫ ∞

−∞
xαβ(t)Ψ

*

(
t− b

a

)
dt (5)

where Ψ(t) is the mother wavelet, * denotes the complex con-
jugate, a and b are the scaling factors and the time shift, and
Ψ( t−b

a ) is one of the “daughter wavelets” of Ψ(t) [38]. With
different selections of a and b, a wavelet bank is then determined.
By selecting proper intervals for the continuous scaling factor
along with the time shift, a CWT is achieved [40]. In a PMU,
the real-time signals are sampled, and discrete signal processing
is actually applied. Due to the limited computational capacity
of hardware, the number of scaling factors are finite; therefore,
the mathematical behavior of the CWT within the processor
is pseudocontinuous with a set of discrete noninteger scaling
factors. So, here, the PCWT, with one of the discrete scaling
factors, is defined as follows:

Xαβ [ω|ak, bk] = 1√|ak|
W−1∑
n=0

xαβ [n]Ψ
∗
[
nTs − bk

ak

]
(6)

where Ts denotes the sampling interval and W stands for the
window (buffer) length. In a CWT, each daughter wavelet needs
to cover a designated frequency range that reflects the features in
time–frequency analysis. The central frequency of the daughter
wavelets can be approximated by the following relationship with
the scaling factor:

f = Fc/ak (7)

where Fc is the central frequency of the mother wavelet [37].
When a vector of scaling factors with length K is chosen, the
wavelet bank Ψ and the extracted features at time instant n are
expressed by the following:

ΨK×W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ

[
nTs − b1

a1

]

...

Ψ

[
nTs − bk

ak

]

...

Ψ
[
nTs−bK

aK

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

XK×1
ω [n] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xω1(a1, b1)

...

Xωk(ak, bk)

...

XωK(aK , bK)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)
To cover a sufficiently wide range of frequency and provide
adequate pattern information for time–frequency analysis, the
central frequency of mother wavelets FC and the largest scaling
factor aK must satisfy the following condition:

Fc

aK
< f0 < Fc (9)

where f0 is the frequency of the signal of interest. Fc needs to
be chosen from a higher frequency range than the maximum
frequency of interest and scaled down by ak. Hence, as ak
increases, the corresponding frequency of the PCWT output
decreases in the frequency domain.

Once the scaling factors are chosen, then (8) is able to generate
the wavelet bank and a series time bin of XK×1

ω along the time
instant, i.e., a scalogram of PCWT is achieved.

C. Convolutional Neural Networks

At this stage, we consider the obtained scalogram as 2-D
images, and the process of event classification turns to an image
classification. The conventional paradigm for image classifi-
cation is to manually design the feature extractor and reduce
the dimensionality of the data; the second phase is to employ
a classifier to classify the lower dimensional features. This
paradigm highly depends on the design of the feature extractor,
where manually designing features for a complex task requires
a great deal of human time and effort; it can take decades for an
entire community of researchers. In contrast, CNNs are able to
learn the feature extractor automatically and have been proven
very successful in broad image-related tasks [39]. By definition,
CNNs are simply neural networks that use convolution in place
of general matrix multiplication in at least one of their lay-
ers [50]. In general, the convolution implementation is through
cross correlations as defined by

sp(m,n) =
∑
u

∑
v

∑
w

Iu(m+ v, n+ w)Kp(v, w) (10)

where sp(m,n) is the output of the convolutional layer at
position (m,n) and pth channel, Iu is the uth channel of the
image/data volume, and Ku is the uth convolutional kernel. A
complex convolutional layer is composed of a small number of
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complex layers [50] and is expressed by the following:

I l = pool (σ(s)) (11)

where I l represents the output volume of the lth layer, σ(·) is
the nonlinearity of the neurons, and pool(·) is a down sampling
procedure. By stacking the convolutional layers, the abstraction
capacity of the network generally increases.

The representations of the last convolutional layer are ex-
panded to vectors and processed by the general fully connected
layers. This transforms the representations with more nonlin-
earities into spaces with different (higher or lower) dimensions.
The final layer of a CNN usually reduces the dimensionality of
the representations to the number of classes; cross entropy [51]
is then employed to measure the “goodness” of the classi-
fication (Kullback–Leibler divergence between the predicted
distribution and the target distribution). Specifically, suppose
a scalogram Xω is mapped by the network to its representation
(scores) s = F(∈ XL) = [s1, s2, . . . , sN ]ᵀ, where XL is the set
of training samples labeled by L. The softmax nonlinearity
is used to normalize the output s to a probability distribution
O = [o1, o2, . . . , oN ]ᵀ, where oi is defined as [51]

oi = P (cp = i|Xω ∈ XL) =
esi∑N
l=1 e

sl
(12)

where cp denotes the predicted label. Cross-entropy loss is
defined by

J = − log(oL) = − log
esL∑N
l=1 e

sl
. (13)

Finally, gradients of the cross-entropy loss function with
respect to the parameters in the CNN are used to train the CNN
by gradient descent algorithm

K(q+1) = K(q) + λ∇K(q)
J(K(q)) (14)

where K is the parameter of the CNN, λ is the learning rate,
and q denotes the iteration number.

III. PROPOSED FEATURE EXTRACTION AND EVENT

CLASSIFICATION BY CNNS

A. PCQ-WT-Based Feature Extraction

Gabor wavelets have been widely used in 2-D pattern recog-
nition [52]–[54]. In order to simplify the design and increase the
computational efficiency, a modified complex Gabor wavelet
from [54] is adopted in this article and is written as follows:

Ψ(t) = exp (jωc(t− b))︸ ︷︷ ︸
Periodic component

· exp
(
− (t− b)2

α2
0

)
︸ ︷︷ ︸
Gaussian envelope

(15)

where wc is the central frequency. The Fourier transform of this
Gabor wavelet is

FΨ(ω) = α0
√
π · exp(−jωb) · exp

(
−α2

0

4
(ω − ωc)

2

)
. (16)

One can see that the Fourier transform of the Gabor wavelet
is also a function on the theme of Gabor wavelet, although not

following the orthogonal property, since

|FΨ(ωc ± ε)| �= 0 (17)

where ε is a small value; according to (16), this Gabor wavelet
has a characteristic of predictable narrow bandwidth. By prop-
erly selectingα0, one of the PCQ-WTs can cover a desired range
of frequencies. And the time shift b plays no magnitude impact
on (16) and (17). Therefore, to ease the derivation, let b = 0,
then the CWT of the Gabor wavelet turns into

Xαβ(ω0|a, b = 0) =
∫ ∞

−∞
xαβ(t)Ψ

*

(
t

a

)
dτ

=

∫ ∞

−∞
exp

(
j
(
ωo − ωc

a

)
t− t2

a2α2
0

)
dτ.

(18)

According to the Hubbard–Stratonovich transformation [55]

exp
(
−α

2
x2
)
=

√
1

2πα

∫ ∞

−∞
exp

(
− y2

2α
− jxy

)
dy. (19)

The CWT of Gabor wavelet in (18) becomes

Xαβ(ω0|a, b = 0) = aα0
√
π exp

(
−α2

0

4
(aω0 − ωc)

2

)
. (20)

It can be seen that when ω0 = ωc/a, (20) reaches its maximum
and the dominant feature of the expected frequency is revealed.
To make each frequency of interest share an equivalent maximal
magnitude, make

aα0 = ωc/γ (21)

where γ is a constant. By this expression and according to (15),
the Gaussian envelope in Gabor wavelet is adaptive to different
frequencies. The discrete form of the Gabor wavelet used in this
article is

Ψ[n|ak, bk] = exp

(
j
ωcTs(n− bk)

ak

)
exp

(
−T 2

s (n− bk)
2

a2
kα

2
0

)

(22)
When applying the complex Gabor wavelet with a set of discrete
scaling factors, we achieve the proposed PCQ-WT, and it can be
written as

Xαβ(ωk|ak, bk = 0) =
W−1∑
n=0

xαβ [n]Ψ
*

[
−Tsm

ak

]

=
W−1∑
n=0

xαβ [n] exp

(
−j

ωc

ak
Tsn− T 2

sn
2

a2
kα

2
0

)
.

(23)

If one determines the frequencies of interest and designs the
Gabor wavelet bank properly, a vector Xαβ,ω that consists of
a set of PCQ-WTs can be obtained; it is able to conduct time–
frequency analysis and generate scalograms, thereby extracting
features from the waveform in frequencies of interest.

B. Event Classification by CNNs

Pursuing development of an event detection mechanism in
power systems, one needs to understand that the scalograms of
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Fig. 2. Proposed architecture for CNN-based classification of the scalograms extracted from PCQ-WT. J is the cross-entropy loss, T l is the true probability
distribution over labels, and Ol is the predicted probability distribution by the networks [51].

Fig. 3. Diagram of the proposed analytical framework embedded within PMU.

the waveforms generated by PCQ-WT convey valuable informa-
tion on the events; the process of event detection is, therefore,
converted to a supervised classification problem on the scalo-
grams. However, the classification for the 2-D scalograms is
challenging due to their high dimensionality. Specifically, every
frame of the obtained scalogram has scales× time bins dimen-
sion (usually hundreds by hundreds); such high-dimensional
data are prohibitive for most of the conventional pattern clas-
sification approaches. We treat the PCQ-WT scalograms as 2-D
images and propose a CNN-based architecture to classify the
events concealed in the scalograms (images). As the scalogram
classification is not with very high abstraction level, we did not
transfer any very deep neural networks to the task; instead,
the proposed CNN has a simple architecture that meets the
requirements of a synchrophasor, yet with very fast test times.

Our proposed CNN contains five layers—three convolutional
(Conv.) layers and two fully connected (FC) layers. The archi-
tecture of the CNN can be seen in Fig. 2, and its specifica-
tions will be introduced in Section IV-C. The overall proposed
online surveillance framework embedded within PMUs is

demonstrated in Fig. 3. This framework can work as an stan-
dalone event detection and classification tool within PMU, or
it can assist the phasor processor to select a proper SEA, if a
suite of multiple SEAs were equipped and available within the
PMUs.

IV. CASE STUDY AND EXPERIMENTS

A. PCQ-WT Parameter Settings

The sampling frequency we used in this article is Fs =
9600 Hz. Up to the 50th order (3000 Hz) of harmonic is con-
sidered; therefore, mathematically, a frequency spectrum that
ranges from 1 to 3000 Hz is requisite. We chose the mother
wavelet’s central frequency as 0.32 times of Fs, i.e., Fc = 0.32
(normalized) for PCQ-WT. The scaling factor should be in the
range of [1, 3072]. However, calculating 3072 PCQ-WTs at the
same time could lead to a high computational burden and large
memory demands; hence, a down sampling of the scaling factor
is much preferred. As the power waveform has its main energy
concentration at around 60 Hz, this frequency has gained the
most attention during monitoring. In designing the PCQ-WT,
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TABLE I
PMU INPUT TEST WAVEFORM PARAMETER SPECIFICATION

*Occurs in all test signals
**Phase shift occurs at lines with faults

Fig. 4. Spectrum of the proposed wavelet bank, the scaling factor is plotted
by log2.

we chose to compress the high-frequency range and neglect the
low-frequency portion; a dyadic scaling factor range [1, 256] is
chosen, i.e., scaling factora = 2i, where i is sampled among 256
uniform intervals in the range of [0, 8]. Finally, we set the value
of the constant γ = 2 and chose a fixed window size with 20 ms
(192 time bins) associated with a fixed time shift bk = 100. By
setting these parameters, the PCQ-WT used in our experiments
is obtained according to (22). The corresponding spectrum of the
Gabor wavelet bank is shown in Fig. 4. The final scalogram fed
into the CNN has a duration of 40 ms (385 time bins) including
one historical window.

B. Test Waveform Specifications

The test power waveform modeling and parameter specifica-
tion are selected according to [6] and [16], which describe the
standard PMU testing and operating environments. With the 11
types of test waveforms as well as a normal waveform, a total
12 types of waveforms are simulated. The parameters for each
type of simulated waveform are specified in Table I. We have
made the following assumptions in the simulations.

1) The signal parameters are randomly selected in the desig-
nated ranges to simulate the uncertainty of event intensity.
The time of occurrence for each event is also randomly
located within a 40-ms run-time window which indicates
that the event could happen at any time.

2) The measurement noise is assumed to be the white Gaus-
sian and the signal-to-noise ratio (SNR) for all test signals
is 40 dB. These assumptions are commonly observed in a
PMU operational environment.

3) This article focuses on the transient event detection by
using the original power waveforms. Only one transient
event is assumed to occur at a given time instant, and
the cascaded events caused by one peculiarity are not
considered at this stage of the presented research.

4) We assume that the PMU is always functioning in its
normal condition despite the faults in the grid; there is
no bad data or congestion in the processor; the inner clock
of PMU is synchronized with GPS, and the sampling rate
is thus a constant.

C. Proposed CNN Configuration

As can be seen in Fig. 2, the CNN developed for the
scalogram classification process has the following architec-
ture: Input(256 × 385)–Conv(100, 5 × 11)–Max-pool(3 × 3)–
Conv(100, 5× 5)–Max-pool(3× 3)–Conv(64, 5× 5)–FC(600)–
FC(12). Unlike the ordinary images which have homogeneous
units on the two axes, the axes of scalograms are with different
units. We chose a wide-shaped kernel in the first convolutional
layer that could extract more information for transitions of the
scalogram along the time axis. The stride of the convolution
operation in the first layer is (2, 3); other convolutional layers’
strides are (1, 1). Besides the last FC layer, batch normaliza-
tion [56] is used in each Conv and FC layers. Dropout [57] was
adopted in the third convolutional layer and the first FC layer
to prevent overfitting. Rectified linear unit (ReLU) was chosen
as nonlinearities in the neural network. The CNN used cross
entropy as the loss function.

We experimented 120 000 samples of the wavelet scalograms
corresponding to the 12 types of events in power grids; these
events are simulated in the MATLAB environment as follows:
96 000 samples are used for training, 12 000 samples for
validation, and 12 000 for testing. We used Adam [58] as the
optimizer, which has the initialized learning rate of 1 × 10−3,
β1 = 0.9, and β2 = 0.999. The CNN was trained 120 epochs,
and the learning rate was decayed 1/10 in every 30 epochs. The
best validated model was recorded and tested.

D. Experimental Results and Analysis

Three patterns extracted by PCQ-WT from three selected
events are demonstrated in Fig. 5. One can see from Fig. 5(a) that
the magnitude of the highest energy concentration which stands
for the fundamental frequency in the scalogram remains almost

Authorized licensed use limited to: The George Washington University. Downloaded on August 06,2020 at 19:20:34 UTC from IEEE Xplore.  Restrictions apply. 



1152 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 56, NO. 2, MARCH/APRIL 2020

Fig. 5. Test waveform simulation results: (a) 2 Hz frequency jump occurs
at t = 10 ms; (b) high resistance line-to-line fault happens at t = 10 ms;
(c) harmonic waves with orders of 5, 7, 9, and 11 are injected at t = 10 ms.

constant except at t = 15 ms (which is 5 ms after a frequency
jump occurs). Among the high-frequency range—scaling fac-
tor from 1 to 128—the pattern appears almost immediately
as the event happens. Fig. 5(b) shows a pattern caused by
a high-resistance line-to-line fault. This pattern has different
features compared to that in Fig. 5(a), and the highest energy
concentration part has a significant drop after the fault happens.
Similarly, this drop is around 5 ms after the fault; the features in
the high-frequency range also show up immediately. When har-
monics exist, one can see that the features in the high-frequency
range are still unique in Fig. 5(c) and the fundamental frequency
feature remains unchanged. Similar to the events in Fig. 5(a) and
(b), the harmonic injection can be detected almost immediately.

As there is no such event detection mechanism that can
simultaneously handle many types of events mentioned in
Section IV-B, we here compare the proposed framework with
traditional time–frequency analytics—WT and STFT, and a
CNN module to form the test benchmarks.

1) The traditional WT method is implemented onto our pro-
posed PCQ-WT algorithm. The scale factor is chosen as
2i, where i is chosen from integers, i.e., i = 0, 1, 2, .., 8.
This is aiming to ensure the same feature-extraction per-
formance and the same frequency-coverage interval as

TABLE II
TRAINING TIME (HH:MM:SS) AND TESTING ACCURACY FOR DIFFERENT

FEATURE-EXTRACTION METHODS

*Proposed

shown in Fig. 4. Here, we name this approach “QWT.”
As the QWT scalograms have the size of 9 × 385, the
corresponding CNN architecture is adjusted to Input(9
× 385)–Conv(100, 3 × 11)–Conv(100, 3 × 3)–Conv(64,
3 × 3)–FC(600)–FC(12). This architecture aims to adapt
to the new input size but with minimum change from the
CNN specified in Section IV-C. Similar to our proposed
CNN architecture for PCQ-WT, batch normalization was
used between the two adjacent layers, two drop-out layers
were applied in the third convolutional layer and first FC
layer. ReLU was chosen as the activation function.

2) The STFT benchmark uses the same frequency coverage
as Fig. 4 and window duration to generate spectrograms
of size (256 × 385). These spectrograms are then fed into
the CNN with configuration as in Fig. 2 for training.

We used a workstation which has an Intel Core i7-8700 K
CPU and Nvidia GeForce GTX 2080Ti GPU as the compu-
tational platform; MATLAB 2016b and Pytorch 0.4.1 [59] as
the implementation tools for PCQ-WT and CNN, respectively.
10 800 samples (9600 for training and 1200 for testing) were
adopted for recording and comparing the computational time
of each scheme. The training time and the best test result of
these three approaches are compared as summarized in Table II.
The best test classification accuracy of the proposed framework
is found to be 92.84%, while the best accuracy for the QWT
approach is 83.87% and for the STFT benchmark is 80.97%.
The gap of the training time between PCQ-WT and STFT is
less than three minutes, because the scalogram of PCQ-WT
and the STFT spectrogram have the same size. QWT takes
approximately one-third the training time of PCQ-WT; however,
considering that the size of PCQ-WT scalogram is 28 times that
in QWT, and that the classification accuracy of our proposed
approach is almost 10% higher, the training time cost for the
proposed approach is acceptable.

Additional details are shown in the confusion matrices (see
Fig. 6). Comparing the confusion matrices between PCQ-WT
[see Fig. 6(a)] and QWT [see Fig. 6(b)], one can see that the
proposed PCQ-WT has only a slightly lower accuracy in detect-
ing harmonic distortion and amplitude modulation events, but
PCQ-WT shows higher and improved performance in detecting
the rest types of events. Especially, PCQ-WT has improved SLG
fault and LL fault detection performance than the traditional WT
method. In detecting the normal operating condition in power
grids, the PCQ-WT reveals a better accuracy than QWT, since
the PCW-WT extracts more patterns from the waveforms and
provides detailed information in the selected frequency intervals.
Additionally, the CNN module would utilize those additional
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Fig. 6. Confusion matrices for the best validation results. (a) PCQ-WT. (b) QWT. (c) STFT.

features in the classification process. When comparing the PQC-
WT with the STFT [see Fig. 6(c)], PCQ-WT also shows an im-
proved performance, except for detecting harmonics. Neverthe-
less, one can see that the STFT approach has the highest accuracy
in detecting harmonics among the three approaches, because the
nature of STFT is to provide the harmonic information.

From Fig. 6(a), it can be seen that for most test waveforms,
the proposed framework detects the event accurately. However,
the frequency jump test case has the lowest accuracy; the reason
is that the range of frequency jump in simulations is assumed to
be within [− 5, 5] Hz. Thus, the values of frequency jump could
be in the vicinity of zero; in such circumstances, the features in
the scalogram are too weak to be detected by the CNN, and
are hence, featured as “normal” signatures. In Fig. 6(a), the
classification accuracy of the amplitude and angle modulation
events are not ideal but still acceptable. The reasons for such
an observation are twofold: 1) the physical duration in a scalo-
gram proved to CNN is 40 ms, which is too short to capture
the entire transition patterns and 2) the lower the modulation
frequencies are, the smaller the modulation magnitudes appear.
The above explanations are mathematically explained in the
following:

xαβ(t) = (1 +MΔ(t− tΔ) sin(ωΔ(t− tΔ)t)︸ ︷︷ ︸
Modulation

)

· cos
(

2π
∫ t

0
F (τ)dτ + φ(t)

)
(24)

MΔ(t) =

{
CM t > 0, CM ∈ [0.005, 0.1]

0 t < 0

ωΔ(t) =

{
CA t > 0, CA/2π ∈ [0.1, 5]

0 t < 0
(25)

where MΔ(t) and ωΔ(t) are the modulation magnitude and
frequency, respectively; and tΔ is the event occurrence point. As
the duration is 40 ms, i.e., tend = 40 ms, and tΔ should satisfy
0 < tΔ < 40 so that the event can be shown in the scalogram,
thus, tend − tΔ turns into a very small value. With small CM

and CA, the modulation can be written as

Mod(t) = CM sin(2πCA(t− tΔ))

≈ 2πCMCA(t− tΔ)

≈ 0, t ∈ [tΔ, tend]. (26)

From (26), one can see that if the event occurs at a time that is
very close to tend, the modulation Mod(t) is extremely small
under the condition that CM and CA are small; meanwhile, the
duration of modulation in the scalogram is very short. Thus,
a scalogram with 40 ms duration would not contain sufficient
features for the occurrence of amplitude modulation, and the
classification accuracy for such events are relatively lower than
the others. Similar arguments hold for analyzing the results
under angle-modulation scenarios.

Therefore, increasing the window size and the modulation
strength may be beneficial to the classification accuracy; this,
however, sacrifices the overall performance, particularly, for
real-time measurements. As the proposed scheme aims to be
deployed as a fast online grid monitoring tool and an awareness
mechanism to assist the PMUs selecting an appropriate SEA,
we kept the parameters that are specified in Section IV-A.

We also investigate the optimal selection of the parameter
values in the CNNs. As there are thousands of values within the
CNNs in this article, we here examined the PCQ-WT-connected
CNN as a demonstration. Fig. 7 displays the optimal values in
the first convolutional layer learned by the CNN, i.e., the 100
kernels of Conv. layer 1 in Fig. 2. These kernels indicate the
extracted features for the scalograms, but since the scalograms
are not natural images, the learned kernels do not present strong
patterns for human vision.

As a time-critical infrastructure, a PMU (in a 60-Hz system)
usually has to process the sampled signal and report the pha-
sor measurements at the rate of 60 frames/s [6]. The com-
putational time of the PCQ-WT and CNN should be, hence,
investigated. Generating a 256 × 385 scalogram by PCQ-WT
takes 1.20 ± 0.23 ms, and the CNN takes 1.04 ± 0.31 ms to
process every scalogram. Therefore, the in-total computational
time of our proposed framework is 2.24 ± 0.39 ms. In this timing
experiment, the timer starts from when the data were loaded into
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Fig. 7. One hundred learned kernels in the first convolutional layer of the
proposed PCQ-WT scheme.

the CPU and GPU memory and ends when the classification
results were given out. The test uses 32-bit precision. This
short computational time satisfies the real-time constraints with
large margin and leaves plenty of time for the subsequent SEA
analytics to function.

V. CONCLUSION AND DISCUSSION

This article introduced a novel PMU-embedded analytic for
power grid online surveillance that consists of the PCQ-WT fea-
ture extraction and CNN-based event classification mechanisms.
The proposed framework aims to effectively extract the wave-
form features and efficiently classify multiple types of events
in the grid. Our experiments and comparisons demonstrated
that the proposed framework achieved improved accuracy for
real-time event detection and classification. This framework
would be a foundation for next-generation intelligent PMUs
that could adaptively select an appropriate SEA and achieve
higher phasor measurement accuracy. Future work would focus
on the integration of SEAs in the proposed framework to leverage
overall functionality of PMUs. Research on implementing other
types of neural networks and machine learning techniques, such
as [24] and [25], should be pursued to further improve the event
detection and classification accuracy.
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