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Abstract—Power system topology change, realized either
through unpredictable disturbances (faults) or transmission line
switching actions in day-to-day operations, manifests itself via a
number of waveforms that can be captured at the measurement
points (substations) in the power grid. The waveforms acquired
by the phasor measurement units (PMUs) and/or other intelligent
electronic devices (IEDs) will potentially carry specific features
corresponding to the event, thereby reflecting the dynamics of a
network topology change. This paper proposes a novel wavelet
transform algorithm, the pseudo continuous quadrature wavelet
transform (PCQ-WT), for online power network topology change
detection, enabling situational awareness spatially and temporally
from one single PMU. Test signals representing different prevail-
ing conditions in the grid with and without a topology change
event are generated and applied to the IEEE 30-bus test system.
The results verify the accurate performance of the proposed event
detection and classification mechanism for online applications.

Index Terms—Feature extraction; Phasor Measurement Unit
(PMU); Waveform classification; Wavelet transform (WT).

I. INTRODUCTION

The synchrophasor technology has revolutionized the tradi-
tional measurement setting in power grids into a new paradigm
with high-resolution measurements. Enabling a higher sit-
uational awareness, the synchrophasosr measurements are
captured across the network via phasor measurement units
(PMUs). Modern power system applications, e.g., model val-
idation, state estimation, dynamic stability monitoring, power
grid real-time monitoring, protection, and control, as well
as post-event analytics have been evolutionarily transformed
via PMUs [1]–[5]. The operational decisions in power grid
are closely dependent on its real-time topology and how the
electricity flows in the network. System operators have a long
history of using state estimation for supervisory control and
operational planning decisions. Wide deployment of PMUs
dramatically improves the topology detection process over
time as the system transition into different operating states.

Waveforms in power grid typically reveal a certain pattern
with specific features and peculiarities driven by the system
operating conditions. For instance, phasor magnitudes and
phase angles go through step changes during faults [6] and
the measurements can be noisy [7]. Unbalanced load, voltage
surge or sag, harmonics, and frequency drift are also common
phenomena in electrical power networks. Several synchropha-
sor estimation algorithms (SEAs) have been proposed in the
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literature, the foundations of which are driven by mathematical
approximations. Pattern recognition and waveform classifica-
tion for power quality and fault analysis have been also re-
searched [8]–[12]. To the best of the authors’ knowledge, only
a few have been focused on waveform feature extraction for
online topology change detection in power grids [3], [13]. In
this paper, a pseudo continuous quadrature wavelet transform
(PCQ-WT) is proposed applied to the PMU input waveforms:
it is dedicated to waveform feature extraction facilitating the
network topology change detection and consequent wave-
form classification. The proposed PCQ-WT feature extraction
scheme does not rely on any PMU output measurements,
neither GPS timing nor SEA is needed. Meanwhile, it achieves
a wide range of frequency coverage for pattern recognition—
but through a reduced number of scaling factor— consequently
providing more details for feature classification process with
an acceptable computational burden. The performance of the
proposed PCQ-WT approach has been tested and verified
under various spatially and temporally categorical conditions
in a test system.

In this paper, Section II presents a brief background on the
waveform feature extraction and classification through con-
tinuous wavelet transform (CWT) and the pseudo-continuous
wavelet transform (PCWT). Section III introduces the pro-
posed PCQ-WT approach. Case studies are analyzed in Section
IV, and the conclusions come in Section V.

II. BACKGROUND AND MOTIVATION

A. Power Waveform Description

First, we define a basic representation of signals in power
transmission systems. Ideally, the PMU input waveforms are
time-domain sinusoidal signals, as represented in (1).

xph(t) = Aph(t)cos

(
2π

∫ t

0

f(τ)dτ + φph(t)

)
(1)

where Aph(t), f(τ), φph(t) are, respectively, the instantaneous
magnitude, fundamental frequency, and phase angles in each
phase. Since the input waveform is captured from a one-phase
electrical signal, xph(t) is a one-dimension (1-D) waveform.
During transients, there exist other frequency components in
the waveform. Thus, the complete format of (1) is

xph(t) =
H∑
h=1

Aph,h(t)cos

(
2π

∫ t

0

fh(τ)dτ + φph,h(t)

)
(2)

where h is the order of harmonics. During a transient state,
certain combination with different values of Aph,h(t), fh(τ),
φph,h(t) will appear in the three-phase power signal. An
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example is the network topology change that will affect the
admittance matrix and consequently the magnitude and phase
angles. This change will reveal certain features and peculiar-
ities. Note that the admittance matrix is unique for a given
network topology. Therefore, as the waveform features change
when the system transition from one to another configuration,
the topology change event can be detected and classified.

In both transient and steady-state conditions, power wave-
forms contain different frequency components. The most
commonly-used multi-resolution waveform classification tech-
niques are short-time Fourier transform (STFT) and continu-
ous wavelet transform (CWT) [14], [15]. The Clarke transfor-
mation is first applied to convert the three-phase signal from
the ABC-reference to components in stationary αβ-frame [16].

xαβ(t) = xα(t) + jxβ(t) (3)[
xα(t)
xβ(t)

]
=

[ 2
3 − 1

3
1
3

0
√
3
3 −

√
3
3

]xA(t)
xB(t)
xC(t)

 (4)

Both STFT and CWT require a window (buffer) of samples to
process the signal in (3) and therefore, the latency cannot be
avoided. Selection of a proper window size could minimize the
latency effect, but at the cost of trading off the frequency res-
olution. The STFT extracts the waveform frequency spectrum
over time via a fixed-length moving window. In contrast, the
CWT evaluates the correlations between the input signal and
a preset wavelet bank consisting of a mother wavelet and its
daughter wavelets. Figure 1 illustrates the feature extraction
results from both STFT (a and b) and CWT (c, d, e, f)
under different grid conditions. It can be clearly observed that
the frequency accuracy of the STFT outperforms that of the
CWT during magnitude jump conditions, but the fundamental
frequency features during faults are lost. However, CWT
stands out for fast feature extraction and event detection.
Therefore, CWT is focused in this paper as the main waveform
classification approach for online topology change detection.

B. CWT and Pseudo-CWT (PCWT)

Wavelet transform is centered on the cross-correlation com-
putations between the signal of interest, xph(t) and a desig-
nated wavelet, defined as follows:

Xph,ω(a, b) =
1√
|a|

∫ ∞
−∞

xph(t)Ψ*(
t− b
a

)dt (5)

where Ψ(t) is the mother wavelet function and Ψ* is the com-
plex conjugate of Ψ(t); a and b are the scaling factor and the
time shift; Ψ( t−ba ) is one of the ”daughter wavelets” of Ψ(t)
[17]. With different selections of a and b, a wavelet bank is
then defined. When proper intervals for the continuous scaling
factor along with the time shift are selected, a continuous-
wavelet transform (CWT) is achieved [18]. By calculating
correlation between the input signal x(t) and the wavelet bank,
feature matrix is the outcome.

Real-time three-phase signals are down sampled within
PMUs; this continuous-time to discrete-time (C2D) sampling
will, however, provide discrete signals. Sharing the same
sampling rate, the wavelet loaded inside the PMU must be
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Fig. 1. Comparison of the STFT vs. Morlet CWT during: (a),(c),(e) magnitude
jump events; (b),(d),(f) double-line fault events.

finite, with a wisely-selected length, thereby ensuring an
acceptable latency. The CWT is pseudo continuous with finite
discrete scaling factors. Here, each pseudo-CWT (PCWT) in
the wavelet bank is defined as

Xph,ωk
(ak, bk) =

1√
|ak|

W−1∑
n=0

xph[n]Ψ*[
nTs − bk

ak
] (6)

where Ts is the sampling interval; W is the window length; ak
is the kth element in the vector of scaling factors with length
K. The wavelet bank Ψ which is a K×W matrix of constant
values, and the PCWT which is a K × 1 matrix at each time
instant n are formed as follows:

Ψ =



Ψ[nTs−b1
a1

]

Ψ[nTs−b2
a2

]
...

Ψ[nTs−bk
ak

]
...

Ψ[nTs−bK
aK

]


, Xω[n] =



Xω1(a1, b1)
Xω2(a2, b2)

...
Xωk(ak, bk)

...
XωK(aK , bK)


(7)

The scaling factor increment is usually set to be positive; so
the kth daughter wavelet’s central frequency is approximated:

fk = Fc/ak (8)
where Fc is the mother wavelet’s central frequency [18], which
stands for the most significant frequency component.

The PCWT output needs to cover a sufficient range of fre-
quency to provide adequate pattern information at at any given
operating condition. Therefore, in addition to the fundamental
frequency, the mother wavelet’s central frequency Fc needs to
satisfy the following condition in (9).

Fc
aK

< f0 < Fc (9)
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Fig. 2. Spectrum of the proposed wavelets for online feature extraction; (a)
Fc = 0.375/Ts, µ = 8 (b) Fc = 0.5/Ts, µ = 8 (c) Fc = 0.5/Ts, µ = 4
(d) Fc = 0.6/Ts, µ = 4.

where f0 is the frequency of the signal of interest. To serve the
research focusing on feature extraction wavelet, Fc is chosen
arbitrarily from a frequency range higher than the fundamental
frequency, scaled down by ak. Hence, as a increases, the
PCWT output position decreases in the frequency domain.

III. PROPOSED WAVELETS BASED ON THE PCWT

A. Theoretical Foundation

The proposed wavelet performs a multi-resolution correla-
tion calculation as described in (6). The PCWT can generally
provide the frequency information through feature extraction
of the power waveforms. This paper is inspired by the char-
acteristics of narrow-bandwidth wavelets. A pass-bandwidth
around the central frequency is framed: if the pass-bandwidth
is wider on the high-frequency range, the high-frequency
components especially appearing during transients can be
easily captured and even amplified; consequently, the spectrum
will show high-energy concentration in that range. In contrast,
the pass-bandwidth needs to be narrow in the low-frequency
range especially around the fundamental frequency, so only the
fundamental frequency features can be captured. The proposed
wavelet has the following format:

Ψ(t) =
1/a

cosh(2µπ Fc

a t)︸ ︷︷ ︸
Vanishing

Component

· cos(2πFc
a
t)︸ ︷︷ ︸

Periodic
Component

. (10)

where µ is a positive pass-bandwidth index; the larger the
value of µ, the wider the pass-bandwidth will be. Equation
(10) is then converted into a discrete format as follows:

Ψ[n] =
1

a

cos(2πTs
Fc

a n)

cosh(2µπTs
Fc

a n)
(11)

Four spectrum of the proposed wavelet bank for PCWT
are demonstrated in Fig. 2. A proper value of Fc should be
selected satisfying the Nyquist sampling theory; this is seen in
Fig. 2 (b)-(c), where f is close to ±1/2. If Fc is larger than
a threshold, aliasing occurs which will interfere the extracted
features within [-1/2, -1/4] and [1/4, 1/2] in Fig. 2(d). A proper
value of FC and µ are crucial for successful feature extraction.

The PCWT process is then formulated as follows:

Xωk|ak,bk =
1

ak

W−1∑
n=0

xαβ [n]Ψ*[
nTs − bk

ak
]

=
1

ak

W−1∑
n=0

|Vαβ [n]|ej(2πTsf0n+θ)cos(2πTs
Fc

ak
n)

cosh(2µπTs
Fc

ak
n)

(12)

expanding (12) with all bk = 0, it can be rewritten as in (13).
Analytically, the window size W must have sufficient length,
and thus, the first summation in (13) plays less of an impact
on the energy ”spectrum” than |f0 − Fc

a |, since,

|f0 +
Fc
ak
| > |f0 −

Fc
ak
| ≥ 0 (14)

when f0 = Fc/ak, the PCWT will result in the highest
correlation coefficients with respect to the targeted waveform.

B. Transformation of 1-D PCWT to the PCQ-WT

The time-domain αβ components will be utilized to gen-
erate a complex-time signal as presented in (12) and (13). In
order to ensure an effective feature extraction, the periodic
component can be rewritten as a unit rotating phasor in (10),
thus the proposed PCQ-WT is achieved as presented in (15).

Ψ[n] =
1

ak

e
j2πTs(

Fc
ak

)n

cosh(2µπTs
Fc

ak
n)

(15)

Therefore, equation (13) can be further simplified as in (16).

Xωk|ak,0 =
1

ak

W−1∑
n=0

Vαβ [n]e
j(2πTs(f0−Fc

ak
)n+θ)

cosh(2µπTs
Fc

ak
n)

(16)

Xωk|ak,0 =
1

ak

W−1∑
n=0

Vαβ [n]ej(2πTsf0n+θ)[e
j(2πTs

Fc
ak
n)

+ e
−j(2πTs

Fc
ak
n)

]

2cosh(2µπTs
Fc

ak
n)

=
1

ak

W−1∑
n=0

Vαβ [n]e
j(2πTs(f0+

Fc
ak

)n+θ)

2cosh(2µπTs
Fc

ak
n)

+
1

ak

W−1∑
n=0

Vαβ [n]e
j(2πTs(f0−Fc

ak
)n+θ)

2cosh(2µπTs
Fc

ak
n)

(13)
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Fig. 3. Spectrum of the proposed wavelet bank, where the scaling factor is
plotted by log2.

IV. NUMERICAL CASE STUDIES

A. Critical Assumptions

This paper proposed a novel wavelet transform to extract
and classify unique features of the input power waveforms
of a PMU and correlate them with topology change events.
The sampling frequency in this paper is 9600Hz; there-
fore, the maximum central frequency of the proposed mother
wavelet is 4800Hz. Usually up to 50th order of harmonics is
considered in power system analysis; therefore, a frequency
spectrum ranging from 1Hz to 3000Hz—which is 0.75 times
the theoretical maximum central frequency—is considered;
hence, Fc = 3000Hz. To match the frequency spectrum,
the scaling factor should ideally be [1, 3000]. However,
simultaneous computation of 3000 PCWT is computationally-
demanding. Therefore, conducting a down-sampling in the
above frequency range is much preferred. The input signal has
normally the most energy concentration in the low-frequency
range, while high-frequency components will appear during
transients. Hence, a dyadic scaling factor ranging [1, 256], i.e.,
2[0,8], is sufficient. A total of 256 samples of exponents are
uniformly selected and the scaling factor set is formed.

B. Test System and Test Cases

In order to evaluate the wavelet performance, the frequency
information and patterns extracted from the input waveforms
are visualized and plotted in the time domain. The IEEE 30-
bus test system is selected as the test platform. The waveforms
are generated from PSCAD/EMTDC using system configura-
tion in [19] with simulation step-size of 6µs and then down-
sampled to 9.6kHz. The numerical evaluations are conducted
on the following aspects: (i) waveform feature extraction
during topology change in the system normal operating con-
dition, and (ii) waveform feature extraction when a fault
occurs following a topology change action. Measurements are
acquired from the PMU located at Bus 6. The computation
efficiency of the proposed wavelets is evaluated by measuring
the time when the event occurs and that when a deformed
pattern is detected. The following test cases are studied.
• Test Case 1: Transmission line (TL)2-4 and TL2-5 are

switched-off, in two separate scenarios, when the system
is in its normal operating condition.

Time (msec)
Scale

M
ag

(a)

Time (msec)
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M
ag

(b)

Fig. 4. Simulation results in Test Case 1 where (a) TL2-4 is switched-off at
t = 30ms, (b) TL2-5 is switched-off at t = 30ms.

• Test Case 2: A 3-phase fault occurred at t = 30ms,
following a topology change by disconnecting TL2-4.

C. Results and Discussions

The frequency response of the PCWT wavelet bank, used
for feature extraction in the experiments, is demonstrated in
Fig. 3. In Fig. 4 (a)-(b), features reveal the maximum energy
concentration on the fundamental frequency. The magnitude of
this energy concentration remains almost constant during both
topology change practices. However, when selecting smaller
scaling factors (higher frequency range), the features can be
obviously differentiated. In Fig. 4, one can observe a larger
energy concentration on the high-frequency range in (a) than
(b). Two energy peaks are observed in 4(a), one greater than
the other. In Fig. 4(b), the extracted feature corresponding to
the topology change action is still obvious. It takes 10ms to
reveal the significant features in both scenarios.

The Test Case 2 results are demonstrated in Fig. 5. The en-
ergy spectrum shows the fault features almost instantaneously
in both Fig. 5 (a), (b). While it may be hard to visually realize
the differences in Fig. 5 (a) and (b), one can see in Fig. 5
(c) that, different features are captured when two different
topologies are realized, when an exact same fault appears at the
same time and location (Bus 15). Based on the experiments,
one may expect the possibility that different topology changes,
in certain conditions, may show similar signatures in the data.
Furthermore, the developed pattern recognition mechanism
offers a promising computational performance, making it
suitable for online applications.

V. CONCLUSION

This paper introduced a novel multi-resolution wavelet
transform, i.e., the PCQ-WT, for online topology change
detection and classification in power systems. The proposed
approach could successfully capture unique patterns and pe-
culiarities associated with a network topology change, either
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Fig. 5. Simulation results in Test Case 2 where 3-phase fault happens at t = 30ms at Bus 15 (a) during normal operation; (b) after TL 2-4 is switched-off;
(c) feature difference.

through faults or transmission topology control practices or
both. The waveform classification outcome can be leveraged
within PMUs, and other IEDs with PMU functionality, to
archive a fast and accurate topology change detection. The
performance of the proposed algorithm, in terms of feature
extraction accuracy and computation time efficiency, was ver-
ified under multiple test cases representing different operating
conditions in a test system.
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