
A Synchrophasor-based Decision Tree Approach for 

Identification of Most Coherent Generating Units 

Abstract— Identifying coherent generating units in power 

systems is an important step toward development of a reduced 

model for bulk electricity grid aiming at wide-area analysis and 

controlled islanding practices. In this paper, an approach for 

identification of the most coherent generating units is proposed 

which exploits a decision tree (DT) algorithm based on 

synchronized data measured by phasor measurement units 

(PMUs). Such DTs should be trained so as to provide accurate 

decisions for almost all possible disturbances in power systems. 

Three probabilistic parameters are, therefore, taken into account 

in a training stage including fault type, fault location, and the 

system load level at the time fault occurs. In order to generate the 

training dataset, different scenarios are simulated and 

appropriate attributes are extracted from voltage phasors. 

Furthermore, the most coherent generating units, which are the 

DT target, are determined in each scenario by evaluating the 

similarity between the frequency components existing in their 

speed variation signals. The effectiveness of the suggested 

approach is verified by its application to the 68-bus, 16-machine 

test system through which it reveals high accuracy in recognizing 

the most coherent generating units under various prevailing 

conditions in power grid.   

Keywords— coherency detection; decision tree; frequency 

component; phasor measurement unit (PMU); wide area 

measurement system. 

I. INTRODUCTION  

HE OPERATING POINT of the power system changes 

continuously following disturbances and other prevailing 

conditions highlighting the need to trace and analyze this 

transient behavior continuously to maintain the system 

stability. However, due to the increasing complexity and 

interconnections of modern power systems, the real-time 

system monitoring, control, and analysis is quite challenging. 

Therefore, a reduced dynamic model of the power grid can be 

helpful for such analysis potentially alleviating the associated 

computational burdens. The first application of coherency-

based generators clustering was to achieve the reduced 

dynamic models of power systems for transient stability 

analyses. Later, with the advent and widespread deployment 

of synchronized measurement technologies, other applications 

such as wide area control [1] and controlled islanding [2] were 

introduced and applied in real world practices.  

Deriving power system equivalence entails two main steps. 
The first step is to identify the coherent generating units and 
partitioning the system based on the generators’ dynamic 
response. The focus on the second step is to determine a 
reduced equivalent model of the generating units in each 
coherent partition using different aggregation and reduction 
methods. The main idea for generator clustering is the 
similarity of dynamic response of generators in response to 
disturbances. In this regard, generating units that have the same 
post-disturbance rotor angle or speed variation are called 
coherent and are clustered in the same category. Some of the 
techniques and methods introduced and developed on the topic 
are as follows: weak links method [3], two time scale method 
[4], modal analysis-based method [5], and nonlinear methods 
[6]. Furthermore,  the wavelet phase difference approach [7], 
subtractive clustering [8], Lyapunov function [9], projection 
pursuit [10], singular value decomposition [11], prony analysis 
[12] and, principal component analysis [13] are among the 
solution techniques applied in the literature. 

Today, synchronized measurement technology (SMT), in 
which phasor measurement unit (PMU) is the main element, 
has been fully installed or is being deployed in many countries 
[14]. Recently, several efforts have been made on the coherent 
generator identification using measurement data captured by 
PMUs [7]-[21]. For instance, the authors in [15] utilized the 
correlation between time-varying signals for assessing the 
coherency between generating units or non-generating buses. 
In [13], principal component analysis (PCA) is applied on 
mono-components obtained from a digital filter bank. The 
concept of equivalent rotor speed in center of inertia (COI) is 
also employed in [10] to find the coherent generating units. In 
[19], coherent generating units are determined using a 
multiflock-based technique. A hierarchical approach to cluster 
the generating units into coherent groups are practiced in [20]. 
In general, there are several key problems and un-addressed 
challenges in most of the previous literature with regards to the 
measurement-based coherent generator identification, 
including complicacy, scalability, and high computational 
burdens, as well as its tight dependency on  the data measured 
by PMUs. Additionally, while some of these studies have 
assumed that the generators clustering is fixed and static 
regardless of disturbance severity, this assumption was 
declined in [8], [21]. Note that each of the aforementioned 
methods suffers from one or more, but not all, pitfalls 
introduced. The main concern still remains to be an efficient 

Mohammad Hossein Rezaeian Koochi1, Pooria Dehghanian2, Student Member, IEEE,  

Saeid Esmaeili1, Payman Dehghanian3, Member, IEEE, and Shiyuan Wang3, Student Member, IEEE 

 1Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran 
2Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA 

3Department of Electrical and Computer Engineering, George Washington University, Washington DC, USA 

mh_rezaeian@eng.uk.ac.ir; pooria.dehghanian@ieee.org; s_esmaeili@uk.ac.ir; payman@gwu.edu; shiyuan1225@gwu.edu 

T 



method for coherency detection that needs to record the rotor 
angle or speed variations for a considerably long time after a 
disturbance occurs. This paper aims to go beyond the 
conventional online coherency detection methods by building 
models, which can predict and detect the coherency in a 
relatively shorter time frame compared to that practiced in the 
past. In so doing, the phasor data measured in the first seconds 
of disturbance occurrence are utilized to predict the most 
coherent generating units using decision trees (DTs) algorithm.  

The method presented in this paper is founded based on 
phasors measured by PMUs and employs DT as a powerful 
pattern recognition mechanism to predict the most coherent 
generating units. The most coherent generating units are 
identified through calculating the similarity between frequency 
components that exist in generators’ speed signals. Noteworthy 
is that these frequencies and their amplitudes represent the 
contribution of each generating unit in the dynamic response of 
power system in the face of disturbances or other prevailing 
conditions. To train the DTs, different scenarios are generated 
and applied to a test power system, each pertinent to a certain 
fault type occurred in a specific  location and at a certain load 
level in the system. These scenarios are selected in such a way 
that they serve as a fairly accurate and reasonable 
representation of all possible fault scenarios in the system. 

II. COHERENCY IN POWER SYSTEMS 

Following a disturbance occurrence, the power system can 
be partitioned into clusters of generating units based on the 
similarity of their swing curve variations. In this regard, 
generating units that have the same swing curves are placed in 
the same cluster and are called “coherent”. It is apparent that 
the deviation in the rotor angle or speed of a generating unit 
after a disturbance represents its contribution to the system 
overall dynamic behavior and response. This can be 
characterized through extracting and investigating the 
frequency components that exist in the rotor angle or speed 
variation signals of generating units. These components can be 
extracted using fast Fourier transform (FFT) as follows. 
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where, ωi (k) and θi (k) are the speed and rotor angle of 
generating unit i at time instant k, and Fi (ω) represents the 
Fourier transform of the speed signal. t  is the time interval 

between two executive samples, which is constant in all 
simulations; NG is the number of generating units in the 
system. In order to identify the most coherent generators, the 
similarity matrix is constructed as follows. 
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In (4), ci,j is the similarity index between generators i and j. 
As described above, the frequency components of angular 
speeds can provide a good representation of each generator’s 
contribution to the system dynamic response and, therefore, 
handful to identify the coherent generating units. The similarity 
matrix elements in (3) is normalized in (5) as identification of 
the most coherent generating units is easier in this way. 
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III. THE PROPOSED METHODOLOGY 

Data mining methods and analytics have been utilized in 
many different applications in power systems studies and 
simulations, where the data are gathered from all over the 
system historically. Then, hidden patterns between these data 
and the target parameters are recognized using different types 
of data mining tools and techniques. Among different types of 
data mining methods, decision tree (DT) seems to be suitable 
for generating unit coherency detection due to its powerful 
ability for classification. Therefore, this paper suggests a 
methodology based on DTs to predict the most coherent 
generating units after a disturbance occurs in power systems. A 
simple decision tree structure is illustrated in Fig 1. Each 
decision tree consists of two types of nodes namely decision 
and terminal nodes. The input to the DT includes several 
attributes, which should be tested and verified in the 
corresponding decision nodes.  
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Figure 1. General structure of a simple decision tree. 

The most coherent generating units are defined based on the 
similarity between the frequency components that exist in 
generators’ angular speeds. The flowchart for the proposed 
methodology is illustrated in Fig. 2, where each decision tree is 
trained offline. In so doing, NS number of scenarios are defined 
based on the possibilities for disturbance severities and 
locations as well as system conditions. In other words, each 
scenario is associated with a specific type of fault occurs when 
the test system is in a given operating condition. It should be 
noted that these scenarios should be selected inclusively and in 
such a way that they can be a good representation of all 
possible situations that can happen in power systems. 

Having defined the scenarios, the required data for 
generating the training dataset should be collected. Hence, each 
scenario is simulated in a time domain platform and the 
required data are measured and stored. These data includes  
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Figure 2. Flowchart of the proposed method. 

voltage phasors variations at all buses as well as the rotor angle 
variations of all generating units during the time period of 
simulations, which are obtained through wide area 
measurement system (WAMS). 

 Two sets of parameters have to be calculated in each 
scenario. First, the most coherent generating units need to be 
determined. In the proposed method, the similarity between the 
frequency components of generating units’ angular speed is 
calculated and the dissimilarity matrix is constructed and 
normalized using (3)-(5). Within the ith row of matrix C (which 
corresponds to generator i), the lowest dissimilarity index cij, 
which should also be lower than a threshold λ, indicates that 
generator j is the one that is most coherent with generator i. 
The Second set of parameters are the appropriate attributes that 
are extracted from voltage phasors measured by PMUs. In this 
paper, the first peak of amplitude and phase angle of voltage 
phasors are selected as the attributes which are illustrated in 
Fig. 3. Note that the selection of appropriate features as the 
input to the pattern recognition algorithm is entirely a target-
based decision. Coherency from a measurement-based point of 
view is the similarity of dynamic responses, represented by 
swing curves. These dynamic responses might cause variations 
in voltage magnitudes and phase angles. Therefore, coherency 
can be assessed through investigating the voltage phasor 
variations, especially the shape of variations. Furthermore, the 
variations associated with an individual bus are different for 
various disturbance types, locations and other probabilistic 
parameters defined in the paper. These probabilistic parameters 
cause the frequency and magnitude of voltage variations to be 
stochastic in nature. Utilizing these attributes help develop 
predictive models which results in faster identification of the 
most coherent generators in the partitioned system. It should be 
noted that the error in PMU measurements or PMU missing 
data will affect the accuracy of DTs. However, in this paper, it 
is assumed that the system is fully observable and the required 
PMU data are continuously available without any data loss or 
any significant error in measurements. 

In this paper, NG number of DTs are considered for NG 
number of generating units. Each DT is aimed to predict the 
generator that is most coherent with the corresponding 
generator. Therefore, each DT will be created based on its own 
dataset. As earlier mentioned, the generating dataset consists of  
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Figure 3. First peak in (a) amplitude and (b) phase angle of a voltage phasor 

two sets of parameters, including the attributes and the target 
parameters. However, the attribute values in all generating 
datasets are the same, while the only difference between 
datasets will be the target. A generating dataset used in this 
paper is presented in Fig. 4. 

IV. RESULTS AND DISCUSSIONS 

The proposed approach is simulated on a 68-bus, 16-
machine test system [22]. Simulations are performed in 3 
different platforms. First, the test power system is simulated 
using DIgSILENT Power Factory. Then, different scenarios are 
applied to this system and the required data are stored. The 
data are processed in the MATLAB environment for further 
analysis and finally, WEKA is employed as the data mining 
software tool to build the DTs algorithm. 

A. Generation of Training Dataset 

In order to generate the training data set, 365 different 
scenarios are defined and applied to the test system. These 
scenarios are chosen so that they can provide a sufficient 
representation of the possible faults that might occur in the 
system. This is achieved by considering three probabilistic 
parameters described in Section 3 to generate the training data 
set. The probability of fault types is listed in Table I [23]. In  
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Figure 4. The training dataset 



TABLE I 

THE PROBABILITIES ASSIGNED TO DIFFERENT FAULT TYPES 

Fault type Probability (%) 

Single line to ground (SLG) 70 

Line to line (LL) 15 

Line to line to ground (LLG) 10 

Three phase 5 

 

TABLE II 

THE PROBABILITIES REPRESENTING SYSTEM LOAD LEVELS 

Load level [%] Probability (%) 

100 5 

94 10 

86 30 

77 30 

71 15 

65 10 

 

this paper, all 68 buses and 86 lines are considered as the 
probable fault locations. The probabilities corresponding to 
various fault locations should be obtained historically. 
However, due to the unavailability of data regarding the 
transmission line outages, these probabilities are considered to 
be identical for all buses and lines in the system. In this paper, 
six load levels are defined to reflect the annual variations of 
load demand. These load levels, shown in Table II, are all 
arbitrary and defined as percentage of maximum loadability of 
the studied system.  

In each of the 365 generated scenarios, one individual fault 
is applied to the test system. Each scenario is simulated for 30 
s, which is enough to find the coherency between generating 
units. The sampling rate of voltage signals is considered to be 
200 Hz, i.e. a time interval of 0.005 s. To assess the coherency 
of generators, speed signals are used. In this regard, for 
generator i, the most coherent generator among other 
generators is the one which has the highest correlation value 
between its speed signal and the speed signal of generator i. 
However, this correlation is assumed to be more than 0.9. In 
each scenario, voltage phasors at all buses as well as rotor 

angles of all generating units are stored to be used for 
extracting the attributes and targets. Then, a training dataset, as 
the one shown in Fig. 4, is generated for each generating unit.  

B. Building the Classifiers’ Models 

 In the proposed approach, 16 DTs, which are related to 16 
generating units that exist in the test power system, are defined. 
The output corresponding to the ith DT will determine the 
generator that is most coherent with generator i. One of the 
best algorithms, which has been used in literature to build a DT 
as a classifier model, is the C4.5 algorithm [24], [25]. This 
algorithm, which is a developed version of earlier algorithms 
ID3 and CLS, has been implemented in WEKA and named as 
J48. However, ensemble classifiers, whether generated by 
techniques such as bagging or boosting, offer better accuracy. 
Therefore, Random Forest, which uses bagging to construct a 
collection of DTs, is employed in this paper. A detailed 
description of these methods and their performance 
characteristics is available in [24], [25]. It should be noted that, 
in this paper, λ is considered to be 0.1. Furthermore, among 
different methods for training and testing a DT, cross-
validation is adopted due to its superior performance compared 
to others. In so doing, for all simulations, the DTs’ evaluation 
is performed using a 10-fold cross-validation method.  

The results of 16 decision trees generated are detailed in 
Table III. As it can be seen, the accuracy of DTs are very high. 
Table III reflects the fact that the measured voltage phasors of 
60 buses are sufficient to determine the  coherency of 
generating units concluded as the output of DTs. This 
highlights that it is essential to obtain the voltage phasors of 
these buses directly or indirectly. Ideally, it is essential to 
monitor the voltage phasors at all buses to achieve a full 
observability of the grid. However, it is not cost-effective to 
install PMUs at all buses. Therefore, there have been numerous 
methods proposed to determine the optimum number and 
locations of PMUs. In this regard, in a wide area measurement 
system, the voltage phasors at PMU buses are measured 
directly by PMUs, while the voltage phasors at buses with no  

TABLE III 

RESULT OF DECISION TREES  

Gen. No. No. of leaves 

No. of 

decision 

nodes 

Decision nodes 

Accuracy [%] 
Amplitude Phase angle 

1 11 10 12, 16, 19, 22, 37, 39, 47, 48 8, 62 99.39 

2 15 14 1, 13, 15, 20, 22, 29, 33, 40, 59 13, 39 99.08 

3 7 6 9, 10, 16, 40, 42, 47 - 99.08 

4 5 4 33 11, 51, 58 100 

5 2 1 19 - 100 

6 13 12 1, 3, 16, 30, 36, 66 1, 25, 27, 37, 48, 51 96.63 

7 13 12 1, 9, 10, 14, 27, 29, 54, 66 11, 12, 31 97.85 

8 10 9 2, 14, 16, 19, 22, 25, 37, 48 64 99.08 

9 10 9 6, 11, 13, 19, 33, 40, 51 - 98.47 

10 12 11 5, 10, 11, 12, 13, 20, 23, 50 6, 14 99.08 

11 7 6 3, 21, 38 3, 14, 54 99.39 

12 7 6 2,19 3, 17, 40, 51 98.16 

13 12 11 2, 7, 13, 17, 20, 22, 36, 43, 54, 67 3 96.93 

14 16 15 11, 13, 16, 18, 23, 24, 28, 35, 46, 49, 57 12, 38, 48 97.55 

15 12 11 14, 15, 16, 17, 30, 32, 41, 54 25 97.55 

16 18 17 1, 10, 12, 13, 16, 17, 22, 35, 42, 48, 59 3, 11, 49, 50 99.39 



installed PMUs are calculated using the data measured at the 
neighboring buses with PMU. Furthermore, for some 
generators such as generator 2, nine amplitude and two phase 
angles are stated as the required data, while it has stated that 
the total number is 14 in the third column. The reason is that 
some of these data are compared with different thresholds in 
more than one decision node.  

 Unlike the first approach (detailed in Table III) in which 
DTs were trained using only the voltage phasors, another 
approach based on both voltage phasors and the results of other 
DTs can also be applied to predict the most coherent 
generating units. In this approach, each DT considers not only 
the voltage phasors, but also the final decision of other DTs in 
the training procedure. In contrast to the first approach, where 
all 16 DTs are constructed in parallel, DTs in the new approach 
are arranged in a multi-layer, hierarchical order architecture. 
Hence, DTs’ performance will be dependent on the final 
decision of each other, meaning that there will be several loops 
in the overall coherent generator identification process. 
Therefore, an optimization problem needs to be solved to find 
the optimum hierarchical scheme for this problem. As an 
example, a typical scheme is selected and illustrated in Fig. 5. 
The detailed information of this approach is provided in Table 
IV. For instance, the final decision of the DT related to 
generator 2 depends on the group of generator 3 as well as the 
voltage amplitude at buses 25 and 42. It can be seen that, 
except for generators 2 and 16, the accuracy of DTs related to 
other generators are higher compared to the first approach.  

 As shown in Fig. 5, the hierarchical coherent generators 
identification approach includes 5 layers, in which layers 1-5 
consist 6, 5, 1, 3 and1 DTs, respectively. In the first layer, the 
generators that are most coherent with each of generators 3, 4, 
8, 9, 11 and 12 are identified using the DTs obtained for each 
of them. Then, the generators most coherent with each of 
generators [1, 2, 5, 7, 10]; [14]; [6, 13, 16] will be determined 
in the second, third and fourth layers, respectively, using their 
corresponding DTs. Finally, the DT in the fifth layer predicts 
the generator is going to be most coherent with generator 15. In 
order to make a comparison between these two coherency 

detection approaches in terms of calculation time and 
computational burdens, the number of decision nodes in the 
longest path from the root node to the farthest leaf in each 
individual DT is calculated. For instance, in the DT shown in 
Fig. 1, the longest path is the one which consists of two 
decision nodes including the decision nodes A and B. The 
longest path of each DT in both approaches is presented in Fig. 
6. One can conclude, from Fig. 6, that in the first approach, the 
DT associated with generating unit 6 owns the longest path 
among all generating units. It highlights that in this approach, 
where all DTs are structured in parallel, most coherent 
generating units are identified after 8 comparisons are 
performed through this DT in the worst case scenario. 
However, in the second approach, which is shown in Fig. 5, the 
generating units are divided into five consecutive layers, and 
hence, it might be expected to perform a series of additional 
comparisons than the first approach to identify the most 
coherent generating units. From Fig. 5 and Fig. 6, it can be 
realized that the worst situation is where DTs associated with  
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Figure 5. Hierarchical scheme for most coherent generators determination 

 

TABLE IV 

RESULT OF DECISION TREES FOR THE TYPICAL HIERARCHICAL APPROACH  

Gen. No. No. of leaves 

No. of 

decision 

nodes 

Decision nodes 

Accuracy 

[%] Generator  
Bus  

Amplitude Phase angle 

1 3 1 8 - - 100 

2 4 3 3 25, 42 - 98.47 

3 7 6 - 9, 10, 16, 40, 42, 47 - 99.08 

4 5 4 - 33 11, 51, 58 100 

5 4 1 4 - - 100 

6 13 8 14 12, 20, 22, 25, 50, 67 - 97.55 

7 13 12 3 10, 25, 31, 33, 47, 54 15, 36, 42, 46, 57 98.47 

8 10 9 - 2, 14, 16, 19, 22, 25, 37, 48 64 99.08 

9 10 9 - 6, 11, 13, 19, 33, 40, 51 - 98.47 

10 4 3 11 11, 56 - 100 

11 7 6 - 3, 21, 38 3, 14, 54 99.39 

12 7 6 - 2, 19 3, 17, 40, 51 98.16 

13 11 6 14 9, 10, 22, 41, 42 - 99.39 

14 14 10 1, 7 6, 12, 16, 40, 43, 45 13, 14 98.16 

15 18 8 1, 2, 10, 14, 16 1, 12 - 99.08 

16 17 8 1, 2, 7, 14 28, 67, 52 13 96.01 



 

Figure 6. Longest path of all DTs: comparison of approaches 

generating units 3, 7, 14, 16 and 15 use their longest paths to 
determine their coherent groups. In such a circumstance, 24 
comparison are needed.  

It should be noted that in some circumstances, several 
generating units in the system may swing together. For 
example, generating unit 1 and 8 in the studied system are 
coherent in almost all cases. Another such example relates to 
generating units 4 and 5 or, generating units 2 and 3. On the 
other hand, there are generating units such as generating unit 
10 that may swap from one group to another for different 
scenarios. Therefore, it is not needed to build and use DTs for 
all generating units. However, we showed, in this paper, that 
one can obtain such DTs for all generating units. 

V. CONCLUSION 

In this paper, a synchrophasor-based approach for 
predicting the most coherent generating units in power systems 
was proposed. This method utilized decision trees to predict 
the most coherent generators after a disturbance occurs. It was 
suggested to use the similarity between frequency components 
that exist in the generators’ angular speed as an index for 
identifying the degree of coherency between generating units. 
Simulation results of the proposed method applied to a 68-bus 
16-machine test system demonstrated that these methods can 
be used for online applications due to its low computational 
burden. A comparison between two different approaches for 
DT formation for coherency assessment showed that although 
using a hierarchical approach increases the overall detection 
time of coherent generators, it reduces the quantity of the 
required data for such assessments especially in an online 
setting. 
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