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Abstract—Following substantial advancements in stochastic
classes of decision-making optimization problems, scenario-based
stochastic optimization, robust\distributionally robust optimiza-
tion, and chance-constrained optimization have recently gained
an increasing attention. Despite the remarkable developments in
probabilistic forecast of uncertainties (e.g., in renewable ener-
gies), most approaches are still being employed in a univariate
framework which fails to unlock a full understanding on the un-
derlying interdependence among uncertain variables of interest.
In order to yield cost-optimal solutions with predefined proba-
bilistic guarantees, conditional and dynamic interdependence in
uncertainty forecasts should be accommodated in power systems
decision-making. This becomes even more important during the
emergencies where high-impact low-probability (HILP) disasters
result in remarkable fluctuations in the uncertain variables.
In order to model the interdependence correlation structure
between different sources of uncertainty in power systems during
both normal and emergency operating conditions, this paper
aims to bridge the gap between the probabilistic forecasting
methods and advanced optimization paradigms; in particular,
perdition regions are generated in the form of ellipsoids with
probabilistic guarantees. We employ a modified Khachiyan’s
algorithm to compute the minimum volume enclosing ellipsoids
(MVEE). Application results based on two datasets on wind
and photovoltaic power are used to verify the efficiency of the
proposed framework.

Index Terms—Probabilistic forecasting; uncertainty sets; ellip-
soids; resilience; stochastic optimization.

I. INTRODUCTION

The proliferation of renewable energy resources have re-
sulted in a drastic increase in the level of complexity and
uncertainty in electric power systems. This calls for advanced
developments of (i) highly scalable optimization techniques
capable of accommodating remarkably high degree of uncer-
tainty, and (ii) fundamental forecasting foundations to provide
a suitable set of inputs to a number of decision-making prob-
lems ranging from long-term planning to short-term operation
in power systems under uncertainty and risk [1], [2].
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The most commonly-accepted forecasting methodology in
the literature and in practice appears in the form of deter-
ministic or point forecast which comprises of single-valued
prediction realization for a variable of interest, location and
time individually and independently as the input to various
decision making problems [3], [4]. Although easier to imple-
ment and interpret, such techniques are always subject to errors
and fluctuations as the solution to a deterministic optimization
formulation is highly sensitive to small changes in uncertain
quantities [5]; if ignored, such uncertainties can result in sub-
optimal or infeasible solutions. Probabilistic forecasting, e.g.,
stochastic optimization [6], chance-constrained [7], robust [8],
and interval [9] optimization, can accommodate mechanisms
to handle various uncertainties in the system. For instance, the
well-known stochastic programming optimization techniques
utilize so many scenarios to find the optimal solution in uncer-
tain environments [10]. Nevertheless, stochastic programming
demands a heavy computational burden and the hard-to-
characterize probability distributions of random variables [11].

The existing literature is found at the earliest stage of
developments on characterizing multivariate uncertainty sets to
be utilized in such classes of stochastic optimization problems.
Most probabilistic forecasts are employed in a univariate
framework which can provide the uncertainty information for
every variable, lead time, and location individually; however,
such forecasts are not able to provide optimal inputs to
various classes of decision-making problems particularly when
spatial, temporal and/or inter-variable dependencies have to be
considered. This is, for instance, the case when facing extreme
weather emergencies (e.g., hurricanes), when the renewable
energy resources such as solar photovoltaic (PV) or wind
power (WP) become significantly sensitive to meteorological
impacts of the weather. In other words, during the hurricane,
while the PV output is low due to the cloudy sky, WP is
much higher with higher wind speed. Therefore, such inter-
dependencies are expected to be considered when generating
scenarios for structural resilience planning as well as response
and recovery solutions to ensure the operational resilience
[12]–[21].

The most common approach in the literature for modeling
temporal/spatial dependencies between different sources of
uncertainties is to generate a huge set of scenarios as random
draws of multivariate characterization [22]. However, such
classes of decision-making problems based on probabilistic
forecast necessitate multivariate probabilistic forecast regions
rather that scenarios. Robust optimization as a popular class
of probabilistic optimization tends to produce a conservative
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solution [11]. While the conservativeness of the solution is
highly dependent on the size of the uncertainty sets, control-
ling the size of the uncertainty set is not a straightforward
task. Similar to the case of univariate probabilistic forecasts,
multivariate prediction region should satisfy the required level
of performance in the system. A multivariate prediction region
mostly takes the form of multivariate ellipsoids, polyhedral or
boxes which technically defines a region where the realization
of multivariate random variable is expected to lie in, with a
certain probability or a predefined tolerance level.

Only a few established frameworks are available in the
literature to generate multivariate prediction regions [1], [2],
[23]. Uncertainty sets are constructed based on the Gaussian
assumption in [24], [25] for wind power and for load demands
[26]. The size and conservativeness of the wind uncertainty
sets in the form of polyhedra presented in [27], [28] and in
the form of ellipsoids in [29] are controlled by a parameter
called uncertainty budget.

For many of probabilistic decision-making problems, the
uncertainty set is characterized in the form of ellipsoids [30],
[31], as ellipsoids prediction regions are more flexible and
realistic compared to finite or hype-boxes ones [32]. To the
best of our knowledge, except a few works in the literature
[2], there is no established work to model the correlation
of different sources of uncertainty following natural hazards
(e.g., hurricanes, earthquakes, wildfires, etc.). The primary
goal in this paper is to propose a new class of multivariate
prediction regions to characterize the uncertainty of those
random variables which are spatially/temporally correlated
and dependent to each other during and following the HILP
events. A new optimization framework is proposed based on
Khachiyan’s algorithm [33]–[35] to find the minimum volume
enclosing ellipsoids (MVEE). The empirical data is employed
to evaluate the performance of the predicted MVEE regions
which can be used as an input to interval, robust, and chance-
constrained optimization problems.

The rest of the paper is organized as follows: in Section II,
a big picture of the proposed framework for weather-driven
uncertainty correlation characterization following natural dis-
asters is explained. Section III presents the formulation of
the Khachiyan’s algorithm, while the methodology to generate
multivariate ellipsoidal prediction regions is discussed in Sec-
tion IV. Section V includes the empirical results and finally
concluding remarks are given in Section VI.

II. WEATHER-DRIVEN UNCERTAINTY CORRELATION

Natural disasters (e.g., windstorm, hurricane, flood, earth-
quake, wildfire, tornado, etc.) can have a considerable impact
on power system operation. Day-to-day weather parameter
forecasts are subject to a huge range of fluctuations during
emergencies which should be mathematically accounted for
in different planning and operation decision-making problems.
Figure 1 presents the big picture of the proposed weather-
driven multivariate uncertainty characterization framework
which includes three different layers: (i) in the first layer,
various daily weather parameters are measured in weather
stations across the network. In case of an extreme weather

emergency, the fluctuation in weather parameter forecasts can
be detected in advance; (ii) the correlations between different
sources of uncertainty in power system are mathematically
modeled in the second layer. For instance, as shown in Fig.
2 following a severe hurricane, the portion of the generated
electricity from wind power becomes larger due to higher-
wind conditions and wind speed, while the PV power output
decreases due to the cloudy weather; (iii) finally, the correlated
uncertainties are considered as an input to the last layer in
which various decision making optimization problems ranging
from long-term planning to short-time operation are solved us-
ing different types of stochastic optimization algorithms (e.g.,
robust, distributionally robust, and chance-constrained). One
can conclude that the correlation between different sources
of uncertainty (e.g., wind power and solar energy) cannot be
simply neglected in modern decision-making problems. In this
paper, a novel framework is proposed to model the correlation
of different uncertain factors in power system during both
normal and emergency operating conditions: we utilize the
concept of ellipsoidal prediction regions which can be used as
an input to different stochastic optimization problems. Among
a huge set of prediction regions which can be used to find
the optimal solutions of stochastic optimization problems,
the proposed framework provides a prediction region with a
predefined reliability level.

III. MATHEMATICAL FORMULATION

Inspired by [33], we here provide necessary formulations to
generate and assess the volume of a full-dimension ellipsoid.

Let X := {x1, ..., xm} ⊂ R be a matrix whose affine hull
is R

d. Note that the ith column is given by ai, i = 1, ...,m.
The minimum-volume ellipsoid satisfies:

1

d
MVEE(X) ⊆ conv(X) ⊆ MVEE(S), (1)

where conv(X) represents the convex hull of X and the ellip-
soid on the left-hand side is obtained by scaling MVEE(X)
around its center by a factor of 1/d. The factor on the left-
hand side is changed to 1/

√
d if X is centrally symmetric (i.e.,

if X = −X). Hence, MVEE(X) provides a rounding of the
full-dimensional conv(X). Given ε > 0, an ellipsoid E ⊂ R

d

can be interpreted as a (1+ε)d-rounding of conv(X) if

1

(1 + ε)d
E ⊆ conv(X) ⊆ E (2)

where the left-hand side of (2) is replaced by 1/
√
(1 + ε)d

while the ellipsoid E is centrally symmetric. Likewise, for γ >
0, an ellipsoid E ⊂ R

d is a (1+γ)-approximation of MVEE(X)
if

conv(X) ⊆ E , Vol(E) ≤ (1 + γ)Vol(MVEE(X)), (3)

where Vol(E) denotes the volume of the ellipsoid E .
A full dimensional ellipsoid EA,c ∈ R

d is specified by a d×d
symmetric positive definite matrix A and a center c ∈ R

d.

EA,c = {x ∈ R
d : (x− c)TA(x− c) ≤ 1} (4)

The volume of the ellipsoid EA,c is denoted by Vol(EA,c) =
μ|A−1/2|, where μ is the volume of the unit ball in R

d [33].
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Fig. 1. The overall architecture of the proposed framework for multivariate weather-driven uncertainty characterization.

Fig. 2. The weather-dependent correlation of power grid uncertainties during
extreme weather events.

If X is not centrally symmetric, a ”lifting” of X to R
n is

defined, where n := d+ 1, by

X ′ := ±a1, ...,±am, where ai :=

[
xi

1

]
i = 1, ...,m, (5)

which is centrally symmetric. One can then conclude that
MVEE(X) and MVEE(X ′) are closely related [35]. Because
X ′ is centrally symmetric, the center of MVEE(X ′) is located
at the origin; therefore, the problem of computing MVEE(X ′)
can be formulated as the following convex optimization prob-
lem [33]:

min
Y

− log |Y |
s.t. (ai)TY ai ≤ 1, i = 1, ...,m,

Y ∈ R
n×n is symmetric and positive definite

(6)

where Y ∈ R
n×n is the decision variable. The Lagrangian

dual of (6) is equivalent to

max
r

Φ(r) := log |Γ(r)||Y |
s.t. eT r = 1,

r ≥ 0,

(7)

where r ∈ R
m is the decision variable and Γ : Rm → R

n×n

is a linear operator function given by the following equation

Γ(r) :=
m∑
i=1

ria
i(ai)T . (8)

The following sufficient optimality conditions for r∗ should
be satisfied to solve the dual program (7).

υi(r
∗) + s∗i = λ∗, i = 1, ...,m, (9a)

eT r∗ = 1, (9b)
r∗i s

∗
i = 0, i = 1, ...,m, (9c)

r∗i , s
∗
i ≥ 0, i = 1, ...,m, (9d)

where

υi(r) := (ai)TΓ(r)−1ai, i = 1, ...,m (10)

For any feasible solution r ∈ R
m of (7) with Φ(r) > −∞,

we have [36]:
m∑
i=1

riυi(r) = n (11)

Therefore, multiplying both sides of (9a) by r∗i and summing
up for i = 1, ...,m, we obtain λ∗ = n by (9b) and (9c). So,
the optimality condition of (7) can be equivalently written as

υi(r
∗) ≤ n, i = 1, ...,m, (12a)

eT r∗ = 1, (12b)
r∗ ≥ 0. (12c)

By combining (11) and (12), one can conclude

r∗i > 0 implies υi(r∗) = n, i = 1, ...,m (13)
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which can be interpreted as the complementary slackness con-
ditions of (9c). Khachiyan’s algorithm is driven by computing
a feasible solution r̃ of dual program that satisfies the ε-relaxed
optimality conditions defined by

υi(r̃) ≥ (1 + ε)n, i = 1, ...,m (14)

For such a solution r̃, let j ∈ {1, ...,m} be such that r̃j > 0.
Using (11), we can have

υj(r̃) =
1

r̃j

(
n−

m∑
i=1,i �=j

r̃jυj(r̃)
)

≥ (n[1− (1 + ε)(1− r̃j)]/r̃j ,

= n(1 + ε− ε/r̃j)

(15)

where (14) is used to check the feasibility of r̃. Hence, such a
solution r̃ satisfy an approximation form of the complementary
slackness conditions of (13). Therefore, Khachiayn’s algorithm
[36] starts with a feasible solution r̄ > 0 of (7) and improves
upon the objective function value by increasing only one
component of r̄ at each iteration and then re-scaling to the
region feasibility. So, in order to relate the optimal solution
r∗ of (7) to MVEE(X), let B ∈ R

d×m be a matrix whose ith
column is given by bi, i = 1, ...,m. Then, MVEE(X) can be
interpreted as follows

MVEE(X) = EA∗,c∗ := {x ∈ R
d : (x− c∗)TA∗(x− c∗) ≤ 1}

(16)

where

A∗ :=
1

d
(Br∗BT −Br∗(Br∗)T )−1, c∗ := Br∗. (17)

Besides, we can have

log vol(MVEE)(X) =
d

2
log d+

1

2
log |Γ(r∗)| (18)

IV. KHACHIYAN’S ALGORITHM IMPLEMENTATION

In this section, we review Khachiyan’s algorithm [36]
which seeks to find a minimum volume ellipsoid containing
A := {±a1, ...,±am}; however, it constructs a sequence of
ellipsoids as it is a dual program

Ek := {y ∈ R
n : yTΓ(rk)−1y ≤ 1} (19)

which should sastisfy Ek ⊂ A, and it stops when A ⊆√
(1 + ε)n Ek. Hence, the polar ellipsoid takes the following

form

E◦
k = {z ∈ R

n : zTΓ(rk)z ≤ 1} (20)

A◦ = {z ∈ R
n : −1 ≤ (ai)T z ≤ 1, i = 1, ...,m} (21)

and the algorithm stops when (1/
√
(1 + ε)n)E◦

k is contained
in A◦. However, in a case that (1/

√
(1 + ε)n)E◦

k is not
contained in A◦ at a particular iteration, one pair of hyper-
planes (ai)T z = ±1 of A◦ intersects E◦

k . So the condition

(aj)TΓ(rk)−1aj = η > (1 + ε)n in Khachiyan’s algorithm
correspond to the following

A◦ ⊆ {z ∈ E◦
k :− ψ

√
(aj)TΓ(rk)−1aj)

≤ (aj)T z ≤ ψ
√
(aj)TΓ(rk)−1aj)}

(22)

where ψ = 1/
√
ρ < 1/

√
(1 + ε)n. In general, Khachiyan’s

algorithm can be summarized as follows:

Algorithm 1 Modified Khachiyan’s algorithm to compute a
feasible solution of (7) satisfying (14)
Require: X = {x1, ..., xm} ⊂ R

d, ε > 0
1: k ← 0, n ← d+ 1, r0 ← (1/m)e

and ai ← ((ai)T , 1)t, i = 1, ...,m.
2: While rk does not satisfy (14), do
3: loop
4: j ← argmaxi=1,...,m(ai)TΓ(rk)−1ai,

ρ ← (aj)TΓ(rk)−1aj ;
5: β ← ρ−n

n(ρ−1) ;
6: rk+1 ← (1− β)rk + βej , k ← k + 1.
7: end loop
8: Output rk.

Note that at each iteration, in order to compute the
(ai)TΓ(rk)−1ai, the inverse of Γ(rk) should be available.
At each iteration, Γ(rk) is updated by adding a rank-one
symmetric matrix to it and then scale it by a positive number.
In some iterations, the vector ai and hence possibly the matrix
Γ(rk) may be sparse. So, the Cholesky factorization LDLT of
Γ(rk) is used where L is a lower triangular matrix with unit
diagonal and D is diagonal with positive diagonal entries. In
order to calculate ρ and j, we can have ρi = (ai)TΓ(rk)−1ai

for each i.

V. NUMERICAL RESULTS AND DISCUSSIONS

A. Data

Three different datasets including wind, PV power [37],
and hurricane intensity [38] are used in this paper to model
the correlation between different sources of uncertainty in
case of hurricanes. For all three datasets, the resolution of
data is considered as 1000 scenarios for one hour and the
forecasts horizon are 1 to 24 hours. The PV and wind forecasts
for three different randomly selected days are depicted in
Fig. 3. The hurricane intensity is measured by the Saffir-
Simpson hurricane wind scale which is from 1 to 5 based on
a hurricane’s sustained wind speed [38]. All simulations have
been performed in Matlab platform in a Mack-book Pro with
a 2.4 GHz Quad-Core Intel Core i5 and 16 GB of memory.

B. Ellipsoidal Prediction Regions Implementation

1) Normal Operating Conditions: The bi-variate predic-
tion ellipsoids are generated using the proposed algorithm
to evaluate the correlation of wind power in different time
scales. Figure 4 illustrates 5 ellipsoid prediction regions with
probabilities ranging from 0.80 to 0.95 by 0.05 increments
and a probability of 0.99 for three randomly-selected time
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Fig. 3. PV/Wind forecasts for one hour in three different randomly selected days.

periods. One can notice that as the probability of enclosing
data increases, the size of the obtained ellipsoids becomes
larger. Similarly in Fig. 5, four different prediction ellipsoids
are generated to model the correlations of PV power output as
a random variable in different time scales. Figure 6 represents
the correlation between two sources of uncertainty (e.g., wind
and PV power) during system normal operating conditions.
Comparing different ellipsoidal prediction regions, it can be
seen that the shape, rotation, and calibration of the ellipsoids
vary depending on the stochastic processes of interests as well
as the underlying uncertainty level in different time periods
and different days. Moreover, the covariance matrix of the
random variables highly impacts both the size and orientation

of the prediction regions. Therefore, it is of utmost importance
to have an accurate prediction regions.

2) Emergency Operating Conditions: During the weather
emergencies, the correlation of different sources of uncertainty
is even further highlighted and should be accounted for in
different decision-making problems. Take a HILP hurricane as
an example, during which, the windy weather would result in
more wind power outputs due to higher wind speeds; however,
the PV power generation is much less than that during the
normal operating conditions because of the cloudy weather.
According to [38], we here assume five different categories
to represent the HILP hurricane intensity, i.e., Category 1
with 74-95 mph sustained winds speed as very dangerous
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Fig. 4. Optimal ellipsoid prediction regions for wind power with probabilities ranging from 0.80 to 0.95 by 0.05 increments and probability 0.99 (from the
smallest to the largest) for three randomly-selected time intervals.
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wind, Category 2 with 96-110 mph wind speed as extremely
dangerous wind, Category 3 with 111-129 mph wind speed
as devastating damage wind, Category 4 with 130-156 mph
wind speed as catastrophic damage winds and finally, Category
5 with 157 mph or higher wind speed as very catastrophic
damage wind. Note that the location of wind farms are not
necessarily subject to these hurricane categories. To further
simplify the evaluations and considering the safety operation

requirements of the wind farms taken into account during
the design and deployment process, We here assume that the
location of wind farms are not very close to the hurricane path.
Figure 7 reflects the three dimensional correlation of wind, PV
power, and hurricane intensity at three randomly-selected time
intervals during the HILP hurricane day. Different statistics
(e.g., min, max, mean, variance, and standard deviation) of
the wind and PV power in the three selected time intervals
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TABLE I
STATISTICS ON DIFFERENT SOURCES OF UNCERTAINTY IN THREE RANDOMLY-SELECTED TIME INTERVALS FOLLOWING A HURRICANE.

Uncertainty Type Min
(p.u.)

Max
(p.u.)

Mean
(p.u.)

Variance Standard Deviation Time
(am/pm)

Hurricane Intensity
(Average)

Wind 1.7828 11.6155 6.0387 2.0732 1.4399 8 am 2
PV 1.4127 11.4167 5.9680 1.9761 1.4057

Wind 11.147 19.5544 14.991 1.7577 1.3258 12 pm 4
PV 0 8.3635 2.9817 2.0879 1.4450

Wind 0.082 10.0052 4.9219 3.1434 1.7730 4 pm 2
PV 1.345 13.8835 7.9386 2.8103 1.6764

are tabulated in Table I. As it can be seen, a higher hurricane
intensity results in more wind power output and less PV power
generation. one can conclude that the proposed framework not
only is able to capture the correlation of different uncertainties
in power grids, but it can also effectively correlate the under-
lying interdependence structure of the hazard intensity with
the existing sources of exogenous uncertainties in power grids.
Effectively addressing the correlation of such uncertain factors
during emergencies will result in generation of plausible sce-
narios that will feed modern optimization formulations seeking
solutions for enhanced structural and operational resilience
during HILP extremes.

VI. CONCLUSION

Transitioning from deterministic to stochastic forecasts in
which power system operators can confidently harness the
full potentials of uncertain renewables calls for developing
frameworks that allow for characterization of multivariate
uncertainties in forms that suit the best the needs of var-
ious decision-making problems. This paper has proposed a
framework to generate, calibrate, and evaluate the uncertainty
information in the form of multivariate ellipsoidal prediction
regions which can be used as an input to different classes
of stochastic optimization. In the face of extreme hazards,
the multivariate uncertainty sets can provide the required in-
formation on stochastic variables that are temporally/spatially
correlated with severity and intensity of the extreme event. In
order to verify the applicability of the proposed approach, two
datasets including wind and PV power during both normal and
emergency operating conditions are employed. The simulation
results revealed that the proposed ellipsoidal uncertainty char-
acterization is able to track and predict the existing uncertainty
level in time and capture the temporal/spatial multivariate un-
certainty correlation with the desired probability and sharpness
level. The proposed framework can be applied to a variety
of planning and operation problems which involve correlated
random variables in order to elevate the resilience level of the
power grid when facing natural or man-cyber threats.
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