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Abstract—Geomagnetically Induced Currents (GIC) are the 
significant effects of the Geomagnetic Disturbances (GMDs) on 
power systems.GICs typically appear in the form of DC components 
in the current waveforms of high voltage transmission lines and may 
lead to transformer saturation , so-called DC saturation. Such 
saturation scenarios, if experienced, can result in severe damages to 
the transformer core and significantly increase the system-wide risk 
of major blackouts. It calls for developing detection and classification 
mechanisms for GICs in power systems so they can be prevented or 
interrupted before emerging as a threat. A major challenge 
associated with GIC detection is the presence of similar events,
resulted from faults and other distortions, such as AC saturation 
caused by harmonics. The current signals recorded by current 
transformers can be analyzed to classify these events. In this paper,
the time-frequency S-Transform is integrated with a sparsely-
enhanced version of the collaborative representation-based 
classification to implement a fast, reliable, and adaptive GIC events 
classification approach. Unlike usual techniques, the proposed 
mechanism does not need any training procedure while, due to its 
linear formulation,acts inherently fast and is adaptable to recognize
the challenging scenarios of combined events.

Index Terms— Smart grids, geomagnetically induced currents,
transformer saturation, pattern recognition, sparse classification.

I. INTRODUCTION
EOMAGNETICALLY induced currents (GICs) have long
been the cause of various power system failures , thus
threatening the power system stability and security [1].

Although mitigation was traditionally the focus of research in GIC 
studies, the recent developments in sensing technologies bring 
about new opportunities to the table. Using real-time 
measurements from electrical currents, onecan develop advanced 
analytical tools to detect and classify GICs from similar power 
quality events towards a successful and resilient GIC mitigation 
strategy. However, research and development efforts have not yet 
been focused on addressing such challenges.

A. Overview and Literature Review
Nowadays, the combination of advanced s ignal processing and

state of the art in artificial intelligence forms the main body of the 
most popular frameworks in event detection and classification in 
a variety of monitoring and control problems including those for 
power system [2]. Power system events classification can be 
interpreted in terms of a general pattern recognition (PR) problem, 
that is usually split into a standard5-step procedureas follows [3]; 
(1) Measurement and preprocessing, (2) Potential event pattern
detection from raw data, (3) Feature Extraction (FE) from the

pattern, that is widely approached by exploiting the Time-
Frequency analysis including but not limited to Short Time 
Fourier Transform (STFT), Wavelets, S-transform, Time-Time 
Transform, Mathematical Morphology, etc. (please refer to [2]-[4]
and references therein). (4) Feature Selection (FS) that is a set of 
techniques for dimensionality reduction within the feature space,
thereby reducing the computational cost, and finally (5) 
Classification were each detected pattern is assigned to a certain 
class of events based on the available domain knowledge. Various 
methods are developed to study and implement each of these steps,
including simple linear to highly complex and nonlinear 
algorithms, where the best approach should be selected by
studying the data characteristics [5], [15].

Recently, signal analytics have been utilized in GIC-related 
studies. Authors of [6] developed a set of analytics to monitor
GICs through processing the distorted electrical signals. These 
approaches, however, are not resilience to grid harmonics and 
their conflictions with those of GICs. Studies in [8] revealed that 
as the GICs intensity changes, theharmonic current magnitudes of 
different orders change accordingly. The application of wavelet 
transforms (WT) for transformer overload detection has been 
investigated in [7].

Most recently, and inspiredby the principle concepts of pattern 
recognition, the authors in [22] proposed a GIC detection 
mechanism in transmission networks. Well-recognized time-
frequency analytics, i.e., the WT and STFT, were applied for FE
while a deep learning neural network (DNN) was implemented for 
the sake of classification. On the one hand, a major challenge with 
the DNN classifier training remains to be the choice of the optimal 
number of training data samples while decreasing the 
computational complexity of the training process. On the other,
due to the fixed window width limitations, STFT is not capable of
accurately capturing the dynamics for non-stationary signals. WT,
however, perform acceptably to extract the signal information in
both time and frequency domains, while is known to be more 
sensitive to noise. 

B. Challenges, Motivations, and Contributions

For the sake of GIC detection and classification, two major sets
of unresolved challenges exist among the implementation of the 
state-of-the-art PR-based algorithms: (1) Analytical modes, which 
are mostly associated with general algorithmic issues such as (1.1) 
optimal feature extraction, (1.2) Feature selection is used to reduce 
the dimensionality of feature space and further improve the 
computational efficiency, (1.3) Optimal classifier training. (2) 
Practical modes including (2.1) Computational resource 
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limitations in GIC observational points such as PMU 
measurements in primary and secondary sides of transformers or 
power inverters, (2.2) no consideration to the integrated 
information revealed from the 3-phase systems, (2.3) Scalability 
and vulnerability to noise and uncertainty sources. 
    In this paper, we address the FE shortages through an enhanced 
version of a time-frequency transform named S Transform 
proposed in [9]. The S transform is the variable-window version 
of the STFT or an extension of WT, principled based on a scalable 
localizing Gaussian window, supplies the frequency-dependent 
resolution, and entirely captures the local phase information. 
Moreover, the theory of sparse-based classification [19] is 
harnessed to formulate the GIC event Classification problem as a 
Sparse Recovery problem with lower time and implementation 
complexities (GIC-SRC).  
   The proposed SRC framework, has variety of advantages 
compared to the ordinary classifiers. It is training-free approach 
while it offers feature independency along with the fact of bless of 
dimensionality discussed in Section IV. Consequently, we do not 
need to put much efforts on conventional FE-FS and the parameter 
adjustments included in ordinary classifiers  training steps. 
Different from the conventional classifiers, the collaborative 
formulation of the GIC-SRC results in higher sparsity in the 
proposed framework when the number of event classes increases, 
thereby revealing a better performance and noise robustness. 
These advantages, along with the linearity of the proposed GIC-
SRC, considerably decrease our computational complexity and 
time cost while preserving a higher accuracy compared to the 
state-of-the-art classifiers. The performance of this method is 
verified over a comprehensive set of 12 GIC-polluted signal 
patterns. We will show the superiority of the proposed GIC-SRC
algorithm in comparison with other trending algorithms such as
ANN [16], and SVM, and its adaptability and scalability for 
unexpected or drastic changes in the data characteristics. 

II. PROBLEM DESCRIPTION AND TERMINOLOGY 
    Here we consider a balanced 110V-60Hz power system as our 
case study. A set of measurements including  labeled 
3-  sinusoidal electrical current signals are recorded from  
classes of events and are available as the training dataset. Each of 
these known-class vectors,  represents a 
possible disturbance event, presumably GIC-related events. The 
goal is to propose an algorithm that takes a feature vector,  
extracted from a sample of such events, , and assign it to one 
of the GIC-caused disturbance classes labeled as . 
This integrated mapping is represented as a mathematical function 

, in which  stands 
for the feature extraction operator, while the classification is 
represented by the operator  (which is found through the 
classifier training and is a nonlinear map in general). The optimal 
framework for the selection of these mappings is a major topic in 
pattern recognition literature. 
    The proposed GIC-SRC first implements an enhanced time-
frequency decomposition technique that harnesses the flexibilities 
of the S-transform in time-frequency plane tiling [12] for feature 
extraction (hence, the first operator D is implemented). A 
modified sparse representation-based classification methodology 
is next applied for the operator . It features a reduced size of the 
feature vectors in the mapping . An optimal training set selection 
approach is pursued to identify the most informative feature 

vectors for each class of the disturbance event. We here split our 
proposed approach into two main sections: (i) Instantaneous 3-
phase feature extraction via HS-Transform, (ii) Feature selection 
and classification using the informative sparse classifier. The 
entire procedure is termed here as Time-frequency-based 
Informative Sparse Classification for Geomagnetically Induced 
Currents (TISC-GIC), as demonstrated in Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. INSTANTANEOUS 3-PHASE FEATURE EXTRACTION 
    In this work, a simultaneous 3-Phase Time-Frequency feature 
extraction is presented primarily for GIC classification. Our 
approach consists of 3 major steps: (1) define an alternative 
complex representation of 3-phase signals using power theories, 
(2) use Hyperbolic S-transform to integrate the benefits of the 
STFT and multiscale resolution of Wavelets, (3) generate an 
enhanced HS-Scalogram distribution as feature-images. 

A.  Instantaneous 3-Phase Signal Processing Tools: Direct-
quadrature transformation ( ) 

    One may alternatively interpret a time-domain instantaneous 
power theory in terms of a 3D mathematical signal decomposition 
that maps a 3-phase waveform into a coupled, (if applicable) 
orthogonal feature space at each sample of time [10]. Every 
decomposed component in the newly formed feature space is 
referred to as an instantaneous power element [24]. We here 
employ a technique widely known as the Synchronous reference 
frame ( ). It is a combination of Park, and Concordia transforms, 
which converts 3-phase electrical signals into a 2 dimensional but 
orthogonal space. Monitoring the trajectories of the Time-
Frequency Representation (TFR) of 3-phase signals under this 
alternative mathematical representation can form a unique, fast, 
and real-time GIC identifier. The  or Park-Clark transform from 

 frame to the synchronous reference frame is defined as 
follows [10]: 
 

  (1) 

 

 Smart 
PMU 

 

 

 Transform 
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Informative Sparse Classification 
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Fig.1. Time-frequency decomposition based Informative Sparse 
Classification for Geomagnetically Induced Currents (TISC-GIC) 
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Where  is the time-variant synchronization angle that represents 
the angular position of the frames. Consider the orthogonality 
between d and q components one may define a combined complex 
signal as follows: 
 

                                  (2) 
Although the general format of  transforms has an extra power 
component, namely zero component that carries the unbalanced 
portion of the signal, for a balanced system,  carries the whole 3-
phase information in this new 2-dimensional mathematical 
domain. We may now use the TFR of this complex signal  (for 
any GIC event captured on a 3-phase current) to form a distinctive 
feature space for GIC classification. 

B. Feature Extraction Through Hyperbolic S-Transform 

    During the last couple of decades, the Time-Frequency 
Representation has been a cutting-edge research area in studying 
the behavior of dynamic signals such as faults in electric power 
grids. Different from the Fourier transform, it offers simultaneous 
time-frequency information on the specifications of the signals’ 
energy and power components [11].  
    The S-Transform (ST) is an alternative linear TFR developed 
first time by Stockwell et al. in [9], [12]. S-Transform integrates 
the local frequency analysis of the STFT with multiscale features 
of WT. It can be, therefore, characterized as a multiscale local FT. 
The STFT can capture transient frequency variations over time 
through a windowing operation that offers time localization. The 
choice of the window function is, however, challenging and 
involves a trade-off. Improving STFT, the progressive resolution 
in WT can be applied. However, it is worth noting that WT 
measures a similar quantity to a frequency called scale. The scale 
is not a characteristic feature of either phase information or 
measurements. FT, STFT, and WT are defined as follows:  
 
FT:                                                  (3) 

 
STFT:            (4) 

 
CWT:                          (5) 

 
where  is a window (e.g., Gaussian),  is a zero-mean mother 
wavelet function, and  is its associated scaling factor. The 
ST combined the globally referenced phase and frequency 
measurements from DFT and STFT, with the progressive 
resolution of the WT through the following formulation: 
 

ST:                         (6) 

 
Compared to STFT, the constant width of the localizing time 
window is  in the ST. Hence, a choice of narrower time windows 
at higher frequencies and wider ones at lower frequencies is made, 
while the scale interpretation is replaced with the pure frequency. 
    Like its linear TFR ancestors, the ST suffers from a low TF 
resolution as well as the high computational complexity. In 
response, a variant fast discrete version of the ST is introduced in 
[14]. In order to address the localization disturbance challenges in 

the time domain associated with the Gaussian window in (7), a 
Hyperbolic ST (HST) is employed [17], offering a way better time 
and frequency resolutions at low and high frequencies. We define 
the discrete version of the HST as follows: 
 

       (7) 
 

where  is the frequency-shifted discrete FT (DFT) of the 
discrete signal : and 

 is the DFT of a hyperbolic window ( ) defined below:  
 

                    (8) 

                   (9) 
 

where  and  are the general representations of a 
hyperbolic function as follows: 

). Additional details on the selection of the 
parameters and  are available in [18]. In order to maintain 
the quadratic dependence of the signal to assure the best possible 
time-frequency resolution, we take the squared amplitude modulus 
of the HST, termed as HS-Scalogram (HSCA=|HST|2), as a 
feature-image that can be used for further classification purposes.  
    Figure 2.a-f represents a selected number of GIC-polluted 3-
phase signals in addition to their HSCA feature-images. Although 
time invisible, the TFR using HS-transform can extract 
meaningful patterns of dissimilarity between these events that can 
be further used in the final classification step. All signals are 
generated in MATLAB/Simulink using the IEEE 34-bus test 
system. Of note is that these time-frequency images (Fig.2 a-f: 
bottom panels) are not a mathematical representation of the 
original 3-phase sinusoidal current signals but the associated 
complex-valued -transform representation as defined in (2). As 
such, one should not expect to find any dominant frequency 
component around 60 Hz within the frequency range. 
 

IV. INFORMATIVE SPARSE CLASSIFICATION 
    In this Section, an overview of the informative sparse GIC 
events classification approach is presented based on the sparse 
representation-based classification technique [19]-[20]. We 
briefly review the sparse recovery theorem concepts utilized to 
interpret and solve the GIC-event (GICE) classification problem. 
A. Sparse Representation-based GIC Events Classification 
    Consider  number of 3-phase GICE patterns from  GICE 
classes are recorded and available in 3-D vectors . Using -
transform an orthogonal complex alternative signal named  is 
generated (2). Next, the HS-Scalogram (7) of the signal  is 
computed and stored as a feature-image called . We form, 
namely, a training feature tensor , 
for the samples to from different classes, i.e.,  
 

 .   (10) 
 
where T and M indicate the number of pixels along the time and 
frequency axes, respectively.  indicates the feature sub-tensor 
formed by the concatenation of all feature images of training GICE 
samples associated with the  event class. According to the 
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sparse recovery theorems, if training data samples are fairy 
informative concerning the general behavior of the  class, any 
arbitrary new feature image  from a similar class can be 
approximately linearly-spanned by the corresponding training 
data; that is, for some real-valued vector  : 
 

.                        (11) 
 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

One may, alternatively, represent   in terms of the entire 
training feature tensor as follows, 
 

,                                 (12) 
 

Back to our notation in Section. II,  and 
 are the mappings of the test sample in addition to the 

constructed training tensor into the pre-designed feature space, 

Fig 2.d-f are illustrating the time domain behavior of different GIC-related 
events on top in addition to their HS-Transform scalograms on the bottom 

Fig 2.a-c are illustrating the time domain behavior of different GIC-related 
events on top in addition to their HS-Transform scalograms on the bottom 

d) 

e) 

f) 

a) 

b) 

c) 
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respectively;  represents the sparse indicator vector. If (11) 
holds, a solution to (12) exists as . By 
definition  is a sparse vector where most of the elements are equal 
to zero except those associated with the  GICE class. Figure 3 
illustrates a visualization of such a procedure. If  is formed from 
an overcomplete system of linear equations, i.e., , where 

 under certain conditions, the desirable sparse format 
of , the solution of (12) can be found using the following 
optimization problem.  
 

        .      (13) 
 

where the -norm represents the number of nonzero elements in 
vector . In GICE classification, the training tensor  satisfies the 
underdetermined format, as the number of GICE classes  is 
reasonably large and enough number of training data points from 
each GIC event class  exists. Since  is NP-hard, we 
can, instead, use the following relaxed -norm problem: 
 

.   (14) 

 
Which is equivalent to the Basic Pursuit Denoising regularization. 
Variety of optimization and greedy based sparse solvers are 
available for solving  and the mathematical requirements for 
the exact recovery of the sparse signal  has been widely discussed 
in the literature [19], [3] (and references there in).  
 
  
 
 
 
 
 
 
 

Fig. 3. A 3D Visualization of the details of the mathematical solution of TISC-
GIC for a test data sample 

 
B.  Notable Properties of TISC-GIC Approach  
    1. Our approach exploits the simultaneous 3-Phase information 
through defining an alternative complex signal (2) compared to the 
single-phase analysis, which results in missing potential couplings 
between-phase relations such as unbalance. 
    2. With regards to the fact of “blessing of dimensionality” [19], 
we can perform a random projection from feature space F to an 
alternative lower-dimensional feature space while not sacrificing 
the recovery performance. This is equivalent in TISC-GIC, to 
generate random faces from time-frequency images of the HSCA.  
    3. Informative sample selection can also be approached to 
further optimize the number of training samples used to form the 
training matrix F (12). Significantly reducing the size of this 
matrix and thereby, the computational cost, Algorithm.1 achieves 
this goal [21].  
 4. Regarding our discussions in Section VI-A, due to the unique 
formulation of sparse based classification, surprisingly, the more 
the number of GICE classes in TISC-GIC, the sparser the pattern 
of signal  and the better the overall recovery performance of (14). 
     
 

 
 
Let  be the training tensor created using the data points of 
 number of GIC classes. Also, for a given , let   be the 

optimal solution of . The selected class is attributed to a sub-
segment in vector that has the minimum reconstruction residual 
value. Figure 3 is a visualization of a typical SRC procedure for a 
GIC event (Algorithm.2). 
 

V.  RESULTS AND DISCUSSIONS 
A. Data and Feature Vectors Generation 
    The overall performance GIC-SRC framework has been 
verified over a synthesized 3-  database that has been generated 
as directed in [22]-[23]. A set of 1000 event samples per class, has 
been generated for DC saturation (caused by GIC), normal 
operational condition, and AC saturation scenarios each one 
associated with three operational conditions including harmonic 
distortions caused by nonlinear loads, in addition to out-of-band 
interferences (OBI), and a normal waveform [23]. Therefore, 12 
types of event waveforms are generated in total. The signal to 
noise ratio (SNR) of all waveforms is set within 20-50 dB, 
randomly, to approximate the measurement noises. 
    To apply the S-transform on 3-  signals first, d-q 
decomposition is applied to map the current signals from the 
original 3-D iabc domain to idq domain. The ,  components are 
merged and formed a complex representation for the current 
signal: . Fig 4.a-d are illustrating the , 
blue, and , red, components for a couple of selected 
saturation-related events.  
 

Algorithm 1. Informative Data Samples Selection [3] 
input: Dimensionality optimized training dictionary    

1- Initiate  with any arbitrary extreme point of .  
2- Find the best element that minimizes the Hausdorff distance. 

.    

3- . 
4- Return to step if the desired   or  is not achieved. 

output: Approximated training dictionary   

Algorithm 2. Sparse GIC Events Classifier (TISC)  
input: training data matrix , GIC test sample   
1. Extract the feature matrix from the training data, using a random 

transformation matrix 
 : . Feature extraction procedure.  

2. Extract features of the testing data from the test sample, using the 
matrix  used in step 1 :  . 

3. Calculate the approximated training dictionary  using 
Algorithm 1. 

4. Solve  or  for sparse vector . 
5. Compute  purified vectors , using indicator 

function , such that  , is a new 
vector whose  only nonzero entries are the entries in  that are 
associated with class . 

6. Compute residual . 
7. . 

output: Classify ( )      

  Training tensor or dictionary.  
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TABLE. I. GENERATED TRANSFORMER SATURATION-RELATED EVENTS 
SPECIFICATIONS [22] 

 

 
 
 
 

 
 

 
 

Fig 4.a-d are illustrating the , blue, and , red, components for a) DC 
Saturation with Harmonics, b) DC Saturation with Out of Band effect, c) Pure 

harmonic and d) a nonlinear load condition 
 
B. Results  
    In addition to TISC-GIC we have designed and evaluated an 
RBF neural network and an RBF support vector machine. Table. I 
is summarizing the average identification accuracy rate overall 12 
event classes for SRC vs. RBF-NN, and RBF-SVM using STFT, 
Gabor WT, and HS-Transform scalograms (for more information 
regarding the details of the ANN and SVM approaches please refer 
to [15]-[16]). The set of 1000 originally generated data samples of 
each Saturation or GIC event class has been split into 10 sub-
groups of 100 data samples. Then a -fold approach has been used 
to fairly test and verifies the performance of each of the 9 feature-
classifier combinations as listed in Table. II. In -fold verification, 
in each fold, 100 data points have been reserved as test and the rest 
of the 900 data samples are used for training purposes. The 
average test performance over 10 folds is taken as the overall 
classification accuracy for each data class. Finally, the average 
classification for all 12 classes of events have been calculated for 
each combination of feature-classifier framework and reported in 
Table. II. As it can be seen, the average performance of all 
approaches is higher with HS-transform FE, (above 75%), while 
SVM slightly leads in the WT and SRC leads with a considerable 
margin in both STFT and HS-Transforms. 

Since by using the whole 900 training samples, the vertical size 
of the training matrix  in (14) would be considerably large (900 
num-train-smpl×12 num-class), Algorithm.1 is applied to select 
the most informative data sample for each data class. The first 200 

TABLE. II. COMPARISON OF THE CLASSIFICATION ACCURACY (%) FOR 9 
COMBINED FEATURE-CLASSIFIER APPROACHES: A 10-FOLD EVALUATION 

FRAMEWORK 
 

 
 
identified convex hull vertices are selected as the most informative 
data samples, and the same 10-fold classification verification is 
performed. We observed that the classification accuracy has been 
only varied within -0.04% for HSF-SRC and -1.8% for STFT-
RBFNN. Considering the train-free functionality of the TISC-GIC 
to ANN, SVM and the results obtained from the DNN [22], this is 
a promising alternative to GIC events detection and classification 
well-suited for low computational resources in observational 
devices such as PMUs and inverters.  

VI. CONCLUSIONS 
    In this paper, combining the unique time-frequency properties 
of a modified version of Stockwell Transform named Hybrid S-
Transform with the theory of sparse representation-based 
classification, we proposed a linear Time-frequency-based 
formulation for GIC event classification termed as TISC-GIC 
classifier.  The main privileges of the proposed framework 
compared to the state-of-the-art techniques are Training-free 
property, feature selection independency, which eliminates all the 
required effort and time for FE-FS and training steps. On top of 
that, the linearity of GIC-SRC significantly decreases the time 
complexity while can easily handle the integration of a greater 
number of event classes within a simple matrix concatenation step 
(12). We verified our approach over a comprehensive set of 12 
GIC polluted signal patterns generated using the IEEE standard 
models and compared the classification accuracy vs ANN and 
SVM machine as two highly recognized artificial intelligence-
based classification paradigms.  
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