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Abstract—Assessment of power system transient stability is
critical for a reliable continuous operation and to ensure none of
the working generating units in the system go out of synchronism.
Therefore, a fast and accurate surveillance of transient stability
in power systems is necessary. This paper proposes a deep
learning neural network framework that captures the phasor
measurement unit (PMU) measurements and monitor the system
transient stability in real-time. The proposed framework utilizes
the convolutional neural network (CNN) with hypotheses CNN
pooling (HCP) to identify the state of the system and detect
the set of critical generators. The suggested CNN module for
stability estimation and the robust HCP module for detecting
critical generators through multi-label classification are tested on
the IEEE 118-bus test system, where different types of faults at
different locations and under varying system load conditions are
simulated. The test results verified that our proposed framework
is fast and accurate, thereby a viable approach for online system
monitoring applications.

Index Terms—Transient stability analysis; Convolutional neu-
ral network (CNN); Hypotheses CNN pooling (HCP); Phasor
measurement unit (PMU); Deep learning

I. INTRODUCTION

TRansient stability assessment, as a mechanism to capture

the power system dynamic security conditions, plays a

significant role in day-to-day power system operation. This

is particularly critical due to the following: (i) continuing

growth in the system interconnection size and complexity; (ii)

proliferation of renewables and rushing arrival of renewables;

(iii) the increasing demand for electricity. As the power system

operating point is reaching the stability limit and its control be-

comes more challenging and difficult, the instability problem

is more likely to occur [1], which would potentially lead to

system outage and blackouts [2], [3]. Real-time and accurate

monitoring of the system transient stability is thus critical and

can help determine the state of the system following large

disturbances (e.g., faults, loss of load, etc.) [4], [5].

Previously, a variety of research methods have been pro-

posed to assess the system transient stability. The traditional

methods through time-domain simulations (TDS) [6], which

require high computations for solving non-linear differential

algebraic equations, are the mainstream Transient Stability

Analysis (TSA) approach in power systems. Transient en-

ergy function (TEF) [7] and partial energy function (PEF)

[8] which compare the potential and kinetic energy values

of the system against the reference value have presented

drawbacks in accurately estimating the actual energy values

in practical scenarios. Other methods such as the extended

equal area criterion (EEAC) [9] and trajectory convexity-

concavity method assess the transient stability based on the

characteristics of the equivalent single-machine infinite bus

system (SMIB) [10], which although computationally more

efficient, the performance accuracy is being compromised.

Recently, techniques based on data driven models such as

support vector machine (SVM) [11]–[13], decision tree, local

regression and neural networks (NN) [14]–[16] have been

explored to assess the system stability performance. The latest

methods proposed are based on the time-series models for

time-adaptive transient stability assessment in power system.

SVM is seen to produce better results while assessing transient

stability; however, in certain situations, inaccurate information

of post-fault conditions lead to significant degradation of the

model performance. Long short-term memory (LSTM) [17]

methods are effective while dealing with feature extraction

in time dimension, but due to their disadvantages in paral-

lelization, training stability and inference speed, feed forward

models in time-series classification are preferred.

In this paper, a real-time framework is proposed for online

monitoring of the power system transient stability. The pro-

posed monitoring system utilizes available measurements—

voltage and current magnitudes, voltage and rotor angles, and

system frequency—obtained from phasor measurement units

(PMU) distributed across the grid. The deep learning network

used in the proposed system is the convolutional neural

network (CNN) [18], which takes the heat-map representation

of the aforementioned variables measured from PMUs and

rearranged over a 3D matrix as the input [19]. The proposed

network is a Y-net architecture [19] which detects the operat-

ing status of the system and the critical generators in case

of unstable scenarios. This involves two different classifier

networks, i.e., multi-class classification for predicting the state

of the system and multi-label classification for identifying

the critical generators. To enhance the performance of the

second classifier , a flexible hypotheses CNN pooling (HCP)
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[20] approach is proposed to produce ultimate multi-label

predictions to aggravate accurate identification of the system

critical generators over all other previously proposed models.

The rest of the paper is structured as follows: Section

II introduces a background on the CNN and HCP models.

Section III introduces the proposed framework consisting of

the data collection and processing, and the deep learning

neural network model architecture. Section IV presents the

numerical results and a comparison of results with other

models. Finally, conclusions are provided in Section V.

II. BACKGROUND ON CNN AND HCP MODELS

Within the family of neural networks, and to train the data

with grid-like topology such as images etc., deep CNN has

been one of the greatest breakthroughs [21]–[23]. CNN con-

sists of convolutional layer, pooling layer and fully connected

layers (FCs). When applied to single-label (multi-class) image

classification, CNN can handle well-aligned images very well

[24]; however, for multi-label image classification, there arises

complexity of miss-alignments and occlusion which would

lead to relative inaccuracy in the prediction of such multi-label

classification. On the other hand, HCP additionally consists of

max pooling layer compared to CNN. It is a flexible deep CNN

structure which can help alleviate these issues, since HCP

takes segment hypotheses as the input which are generated by

object detection techniques, and then connects a shared CNN

to each hypotheses, finally aggregating single-label predictions

from different hypotheses into the multi-label results [20].

Typically, the features are extracted from the input data via

the convolutional layer by the convolution kernel, defined by,

Oj
C = f

⎛
⎝ ∑

i∈Mj

xi ∗ kij + bj

⎞
⎠ (1)

where Oj
c is the jth feature map of the convolution layer, xi is

the input image set, kij is the convolution kernel corresponding

to Oc and xi, bj is the bias. ∗ stands for the convolution

operation and f is defined as f = max{0, x}.
The pooling layer extracts the important features from the

convolutional layer, the output of which can be formulated as

Oj
P = f

(
βjdown(Oj

C) + bj

)
(2)

where down sampling function is represented and βj is the

jth multiplier of the pooling layer. The fully connected layer

may consist of multiple hidden layers and its output can be

generally represented in the following form

ŷ = σ(ωOP + bj) (3)

where ω is the weight and σ is the activation function. Suppose

vi is the output vector of the ith hypotheses from the shared

CNN and vij is the jth component of vi. The max pooling

layer can be then formulated as

v(j) = max
(
v
(j)
1 , v

(j)
2 , · · · , v(j)m

)
(4)

where vj can be considered as the predicted value for the

jth category of a given image.

For a multi-label classification, yi = [yi1, yi2, · · · , yic] is the

label vector of the ith image. If the image is annotated with

class j, then yij = 1 or else yij = 0. The probability vector

for ith image is defined as p̂i = yi/||yi||. The cost function

to be minimized is then defined as

J =
1

M

M∑
i=1

c∑
k=1

(pik − p̂ik)
2

(5)

where M stands for the number of images

The final output of the first classifier is obtained through

a softmax operator. Softmax function calculates the estimated

probability scores for each individual class. These scores are

useful in deciding the most probable class for each input

pattern. The activation function used at the output layer for

the second classifier is the sigmoid function. In sigmoid

activation function at the output layer, the neural network

models probability of a class as a Bernoulli distribution.

Sigmoid function [25], unlike softmax, do not give a prob-

ability distribution around different classes as the output, but

provides independent probabilities. Multi-label classification

tasks are not mutually exclusive and each class is independent;

therefore, this function allows for such types of classifications.

III. PROPOSED FRAMEWORK

The proposed framework for online power system stability

surveillance is illustrated in Fig. 1. The data obtained from

PMUs is first used for offline training of the pre-built hybrid

deep learning model. The trained model is then used for online

detection of the power system stability and to identify sets of

critical generators in real-time.

A. Training Data Acquisition

The parameters used for training the model are the current

and voltage magnitudes, rotor angle, voltage angle, and fre-

quency. The training data is collected from PMUs located at

all generator buses across the network, the data on which is

obtained through TSA simulations on the IEEE 118-bus test

system in the PowerWorld software environment. The IEEE

118-bus test system comprises of 118 buses, 54 generating

units, 99 load points, and 177 transmission lines. The TSA

simulations are conducted for various types of faults (3-phase

balanced faults on each bus and on each transmission line at

three different locations of 25%, 50% and 75% of the line

length) and under varying loading conditions in the system.

Each simulation is run for a period of 20 seconds and a

time-step of 0.02 seconds is used throughout, such that 1000

timestamp recordings are available for each contingency. For

each contingency, the fault is created exactly at t = 1s and

the fault is simulated for 8 cycles (i.e., 0.1333 seconds), after

which it is cleared. All such contingencies including bus faults

and transmission line faults are repeated for several load levels

in the system (base load and -3%, -2%, -1%, +1%, +2%, +3%,

+5% and 7%), for which the load flows are converged.
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Fig. 1. The proposed framework for power system online stability surveillance.

Fig. 2. 3D data matrix representation in the proposed framework.

B. Data Pre-Processing

In order to monitor the system transient stability in real-

time, the surveillance system needs to continuously analyze the

power system parameters over few time-steps. All parameters

described in Section III-A are observed over a sliding window

of time stamps, lets say t time-stamps. Therefore, at every

sampling instant, the sliding window consists of (t − 1) past

measurement recordings and one current measurement record-

ing. The observed raw data is rearranged and transformed

into a three-dimensional vector (timestamp, generator number,

parameter) as shown in Figure 2, where color shades are

assigned over time such that the darkest shade is the newest

time-stamp entry into the data matrix. There are 54 generators

(G1 to G54) on Generator axis and 5 parameters in all on

Parameter axis. Also, a range of timestamps exist on the Time
axis. The length of each observation window is 5 timestamps

and the sliding step is 1 timestamp (note: these two settings

are recommended by [19]).

A heat-map image of this three dimensional matrix is

created for each sample, i.e., the data matrix for each sample

is rendered a color image of size T × N × P , wherein T is

the length of the observation window, N is the number of

generators, and P is the number of parameters. Therefore, the

size of each heat-map image for any particular fault scenario

is considered constant and it is 5×54×5. The representation of

stable and unstable cases for bus and transmission line fault is

shown in Figure 3. The demonstrated heat-maps are obtained

by rearranging the data from 3D into a 2D matrix form (54 ×
25) through stacking all 5 timestamps on the parameter axis.

(a) Bus Fault Stable (b) Bus Fault Unstable

(c) Transm. line fault Stable (d) Transm. line fault Unstable

Fig. 3. Visualisation of the extracted features from data matrix in both stable
and unstable cases.

C. Rotor Angle Estimation

Apart from the measurements directly obtained from the

PMU units, generator rotor angle is a parameter that is used

in the data matrix which is not available from the PMUs

directly, but can be estimated by various dynamic state es-

timation methods [26]. During transient conditions, the rotor

angle estimation is not as straightforward as in the case of

steady-state conditions. Among various methods rotor angle

estimation during transient conditions, the estimation using the

damper current measurements is here pursued [27].

The electric torque of a generating unit is commonly ex-

pressed using the known parameters of the generator machine

as given in (6) [27]:

Te = (Ld−Lq)idiq+kMF iF iq+(kMDiqiD−kMQidiQ) (6)

and the swing equation of the generating unit is given by

the following equation:

2H

ωs

dω

dt
= Tm − Te = Ta (7)

where Tm, Te, and Ta are the mechanical, electrical, and

accelerating torque of the generator, respectively. k =
√

3/2,

Ld and Lq are the stator inductances; id, iq , iD, iQ, and iF
are the currents in the individual damper windings; MD, MF ,
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and MQ are maximum values of the stator to field, stator to

q-axis damper winding, and stator to d-axis damper winding

mutual inductances and ω and ωs are the speed of the rotor

and synchronous speed of the machine, respectively.

The accelerating or decelerating torque at the nth instant

on the rotor can be found from the following equation:

Ta(n) = Tm − Te(n) (8)

Inserting (8) in equation (7) and integrating it, the speed of

the rotor can be assessed using the following equation,

ω =

∫
Ta

2Hωs
dt (9)

The rotor angle can be eventually achieved by integrating

the speed of the rotor as follows,

δ =

∫
(ω − 1)dt (10)

The above equation helps in estimating the rotor angle of the

system generators using PMU measurements during a transient

operating condition (e.g., post disturbances).

D. Transient Stability Index

Transient stability assessment in power systems is captured

using Transient Stability index (TSI). If a disturbance occurs

and is cleared exactly after 8 cycles (t = 1.1333s), then

the state of the system following the contingency can be

theoretically determined via the TSI, which is defined as

η =
360◦ − |Δδ|max

360◦ + |Δδ|max
(11)

where Δδmax is the maximum rotor angle separation between

any two generators following the fault. The system stability

profiles obtained through the simulations are classified stable

or unstable based on the value of η. A system is considered

stable if η > 0, otherwise the system would be labelled as

unstable. If a case is classified as an unstable case, and the

angle separation of certain generators from the rest of the

generators is more than 360◦, then that set of generators is

classified as critical for that particular contingency.

The system operating states are distinguished into six dif-

ferent classes as shown in Table I.

TABLE I
POSSIBLE SYSTEM STATE LABELS BASED ON OBSERVED DATA MATRICES

Class 1 : No Disturbance Class 4 : Fault Clearance
Class 2 : Fault Occurrence Class 5 : Return to Stable State
Class 3 : Fault Duration Class 6 : Unstable State

The system operating state is differentiated based on various

events of interest taking place in the system. A detailed

description of these events and the classification of these six

different classes are described as follows:

• Class 1: All the observed data matrices belong to the

pre-fault operating time.

• Class 2: Any observed data matrix that covers the instant

timestamp of the fault occurrence.

• Class 3: All the observed data matrices which cover

exactly the timestamps that lie between fault occurrence

and fault clearance (without instant timestamps of either

fault occurrence or fault clearance).

• Class 4: Any observed data matrix which covers the

instant timestamp of the fault clearance.

• Class 5: During post-fault clearance period, all the ob-

served data matrices which reveal the stable state.

• Class 6: During post-fault clearance period, all the ob-

served data matrices contain the instant timestamp of

unstable states and all the timestamp afterward. Each data

matrix is here associated with a set of critical generators.

The training data is generated follows Section III-A, and is

classified and labeled accordingly based on Table I. It is then

used to train the deep learning model presented next.

E. Proposed Hybrid CNN + HCP Architecture

The suggested Y-net CNN architecture is shown in Figure

4, where firstly smaller candidate windows are selected within

the input image as hypotheses by a hypotheses selection pro-

cess. The selected hypotheses are fed into two convolutional

layers to compress the split image into feature maps. After

extraction of features from the data matrix, the network is

divided into two different branches. The upper branch in the

network, shown as Classifier 1, works as a multi-class classifier

which detects the system stability. The lower branch shown

as Classifier 2 performs a multi-label classification which

identifies the system critical generators. Within Classifier 1, the

extracted feature is fed into Relu and fully connected layers,

softmax is then used to give the output. For Classifier 2, the

extracted feature acts as an input to the shared CNN and fuses

individual hypotheses scores with a max pooling operation.

Unlike Classifier 1, Classifier 2 uses a sigmoidal activation

function. To integrate both branches, errors in both classifiers

are back propagated together during the training process.

During the operation of the proposed framework, if Classi-

fier 1 is detected as Class 6, then the output of the Classifier

2, i.e. the multi-label classification, is produced in parallel to

the final output; if the output of Classifier 1 is detected as any

class other than Class 6, the output of Classifier 2 is a null

set. One should note that the proposed framework can only be

used after training based on the simulated electrical system.

Fig. 4. The proposed CNN architecture with Hypotheses pooling.
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IV. NUMERICAL RESULTS AND ANALYSIS

The IEEE 118-bus test system is used as the test platform,

where a total of 5652 contingency scenarios are simulated

including different types of faults under varying loading levels.

The data set is randomly split into the training and validation

test sets, and the represented results are averaged over these

trials. The number of sample windows in Class 5 (stable post

transient disturbance) is much larger than the other classes,

whereas, in Class 2, Class 3 and Class 4 the number of

samples is relatively lower. Hence, to balance the data for

training the NN, sub-sampling without replacement is used to

represent the classes in equal proportion in the training dataset

[19]. During sub-sampling, each sample is only sampled once

and the training and validation dataset are mutually exclusive.

Additionally, the input data for the training datasets in all the

unstable cases of Class 6 are modified with the associated

matrix file containing the information about critical generators

for each particular unstable case. The performance of the

proposed work has been tested under no noise consideration.

The implementation of the CNN algorithm is achieved

in Tensorflow 1.14.0 with NVIDIA GeForce RTX, 64GB

GPU (CUDA 10.0) support. The NN is trained with Adam

Optimizer with a batch size of 64. The data matrix of the

PMU readings generated through simulations in PowerWorld

Simulator are used as the input to train the NN. The size of the

input data matrix is very small (5x54x5)—the equivalent heat-

map image size is (54x25)—compared to the normal image

size (300x300) or (512x512). Therefore, while training the

CNN module, a comparable image-size and a similar kernel

size is used. The consideration of smaller image size works

better as there is a need to look for global features in the data

matrix and not local features. A similar kernel size to the size

of the input image reduces additional computational burden.

In our online monitoring system, along with the accuracy

of the model, another critical factor is the time taken for

computation of the outputs in both introduced classifiers.

The time required for computing the final output of a given

sample window should be extremely low for the system to be

considered viable in real-time.

0 1 2 3 4 5 6 7 8 9 10

Training Time

Testing Time

2.67

4.94

8.06

9.2

Time

CNN-HCP Classifier CNN Classifier

(min)

(μs)

Fig. 5. Training and testing time for two different models.

The bar graph in Figure 5 represents the training time

and the online monitoring time computed on two different

models. The first model is the CNN model [21] (without HCP

Framework) and the second model is the proposed flexible

CNN-HCP framework used for detection of system critical

generators. The time calculated for the final output of both

models is 4.94μs and 9.2μs, respectively. Thus, although the

proposed model is a bit slower in monitoring, it is still efficient

enough to work in real-time. Furthermore, the training time

Fig. 6. Confusion matrix presenting accuracy of the proposed hybrid
framework considering all loading conditions.

for this model is relatively higher than that in traditional CNN

model which is 2.67 minutes. The time required for training

the proposed CNN-HCP network for the studied 118-bus test

system is 8.06 minutes and the training is done offline.

The confusion matrix in Figure 6 shows the overall accuracy

in detecting the system operating state for different load

conditions during the testing process. For each class, 3000

samples are taken for testing purposes. The labels in the

True Label stand for the true class of the testing data and

the Predicted Label stands for the classified results of the

CNN-HCP model. As the result shows, 91.1% samples are

correctly classified to detect Class 2 and 1.4% of the samples

are mistakenly classified as Class 6.

80 81 82 83 84 85 86 87 88 89 90 91 92

Full Data Test

Base Load

Varying Load

86.13

85.31

81.81

89.1

87.01

88.16

90

90

90
90.6

89.8

88.5

Accuracy (%)

CNN-HCP Classifier 1 CNN Classifier 1 CNN-HCP Classifier 2 CNN Classifier 2

Fig. 7. Detection accuracy at base load and varying load conditions.

The greater training and testing time comes with an in-

creased accuracy rate for the suggested hybrid model in this

paper. The bar graph in Figure 7 represents a similar accuracy

rate for classifying the state of the system and a considerable

increase in accuracy rate while detecting the critical generators

when the system is trained for the entire dataset (including

all types of faults at all varying load conditions specified in

Section III-A). Secondly, the proposed model is tested on the

base and varying load conditions separately and compared with

the CNN model in [21]. In all the given test cases, the results

represent that the suggested CNN-HCP model outperforms in

all conditions as compared to the previously studied CNN

model in [21] which does not use the HCP framework for

multi-label classification. For the base case load, when trained

for 3-phase faults on buses and transmission lines at three

different locations, the total number of 628 contingencies
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are considered. For the varying load conditions (±2 and

3%), a total number of 2512 contingencies are modeled for

training, which includes all different types of faults. In both

load conditions, the results of the Classifier 1 obtained from

both frameworks reveal a similar accuracy rate. However, the

accuracy rate of Classifier 2 from the proposed framework

shows a significant improvement, compared with that from

[21], which verifies that the proposed framework can be more

robust when it comes to detecting the set of critical generators

in power systems following a transient disturbance.

V. CONCLUSION

This paper presents an advanced deep learning framework

for online detection of unstable operating states in power

systems and real-time identification of system critical genera-

tors following disturbances. The proposed framework utilizes

phasor measurements from PMUs at the generator buses and

classifies the events based on the features extracted from the

measurements. In the proposed framework, CNN is used to

classify two different outputs simultaneously, which consists

of multi-class and multi-label classifications, followed with

a suggested HCP technique for the latter classification. The

performance of the proposed framework is tested on a variety

of scenarios and under varying load conditions. Simulations

verified that the proposed framework with HCP reveals a more

accurate outcome compared to the traditional CNN models.

The suggested model comes with a higher accuracy at the

trade off of the computing time, yet computationally-efficient

and applicable to applications in online setting.

Future work could be targetted at implementing the pro-

posed framework on a large real-world power grid, and validat-

ing the results accuracy and computational effectiveness during

real-time applications. The performance of the proposed model

could be tested and compared by using a real-time digital

simulator. Additionally, an interesting and important direction

could be to use reinforcement learning for power systems

stability surveillance which can train the deep learning models

online unlike the proposed work where the model needs to be

trained offline.
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