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Abstract—Geomagnetically induced currents (GICs) in power
grids are mainly caused by geomagnetic disturbances especially
during solar storms. Such currents can potentially cause negative
impacts on power grid equipment and even damage the power
transformers resulting in a significant risk of blackouts. There-
fore, monitoring GICs in power systems and developing solutions
to mitigate their impacts before rising to a certain threatening
level is urgently in need. Monitoring GICs is, however, quite
a challenge and costly, as they usually appear in forms of DC
components in the high voltage transmission lines, which are
barely accessible through transformers. By examining the mea-
sured currents from the current transformers (CTs), this paper
proposes a framework to detect GICs in power transmission
systems through a hybrid time-frequency analysis combined with
machining learning technology. Simulated results verify that the
proposed approach can promisingly estimate GICs in power
systems during a variety of grid operating conditions.

Index Terms—Convolutional Neural Network (CNN); feature
extraction; geomagnetic disturbance (GMD); geomagnetically
induced current (GIC); harmonics; wavelet transform (WT).

I. INTRODUCTION

Geomagnetic disturbances (GMDs) are mainly caused by
solar storms, during which charged particles erupt from solar
flares resulting in the associated coronal mass ejections into
space during the intensity peak of the sun’s cycle. Conse-
quently, geomagnetically induced currents (GICs) will appear
in the conductor surface of Earth. The flow of these currents
into power transmission lines can potentially cause ”half-
cycle saturation” of high-voltage bulk power transformers.
This phenomenon can lead to relay miss-operations, voltage
dips, elevated reactive power demand, transformer overheating,
disruptive harmonics, aging or malfunction of the electric
power devices, and even a total collapse of the grid in the
worst case scenarios [1]–[5].

Northern North America is particularly susceptible to prob-
lems resulting from GICs. On March 13, 1989, an exception-
ally strong GMD caused major damages to electrical power
equipment in Canada, Scandinavia, and the United States.
Hydro-Quebec extra high voltage (EHV) transmission system
experienced instability and tripping of lines carrying power to
Montreal resulting in the total blackout of the Hydro-Quebec
system [6], [7]. In the United States, a voltage fluctuation
of up to 4 percent was recorded on the EHV systems in
Pennsylvania, New Jersey, and Maryland. On September 19,
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1989, at the Salem Unit 2 nuclear power plant, a second solar
storm damaged the step-up transformers [8].

To limit the potential GICs-caused damages in power grids
calls for developing advanced tools and mechanisms to mon-
itor and detect the GICs as their consequences unfold and
also solutions to mitigate the impacts before they rise to a
certain threatening level. On one hand, the GMD phenomena
may not always result in GICs in power systems. On the other
hand, directly accessing GICs—which represents itself as a DC
component in the high voltage transmission lines—is costly
and a challenge. Conventional techniques to monitoring high
voltage transmission lines rely solely on the AC measurements
through voltage transformers (VTs) and current transformers
(CTs), simply neglecting the DC components flowing on
transmission lines. Additionally, there are other sources of
harmonics in power grids, generated by nonlinear loads or
overloading transformers, that may flow in the grid [9] and can
interfere with those harmonics generated by GICs, particularly
when GMD level is low. Such interference will make the
GICs detection a challenge, as the measured waveforms from
CTs or VTs capture all harmonic signals together with the
fundamental component—50 Hz or 60 Hz.

Several studies have focused on modeling harmonic-
embedded power flows and mitigation solutions when facing
GICs in power systems [2], [10]–[12]. Different mitigation
strategies should be taken depending on the severity of GICs
impacts on the grid. However, research and development
efforts on GICs impact detection mechanisms are scarce so
far. The proposed techniques in [13], [14] are centered on
monitoring GICs mainly based on analyzing the distorted
waveforms; however, none has considered the appearance of
other grid harmonics and the conflicting interactions with
those of GICs. Furthermore, thermal noise would be higher
in the transformer secondary winding due to the accumulated
heat during transformer saturation, which adds another layer
of interference, making GICs detection harder than usual.
Additionally, studies in [3] demonstrated that the excited
harmonic current magnitudes of different orders vary when
GICs intensity increases. The harmonic components generated
by GICs behave in different ways and the existing detection
mechanisms do not consider such interference.

Studies in [9] show the promising performance of trans-
former overloading detection by applying wavelet transforms.
Machine learning mechanisms have been widely utilized in
solving electric power system problems [15]–[17] and are
being frequently approached to revolutionize the solution
techniques and emerging technologies in power grids. Inspired
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by the principle concepts of feature extraction and event
detection based on waveform analysis, this paper proposes a
GIC detection solution in the high voltage transmission sys-
tems. Two major time-frequency analysis techniques, namely
the wavelet transform (WT) and short-time Fourier transform
(STFT), are applied and their performance are evaluated. We
further propose a GIC detection algorithm centered on a hybrid
WT and STFT combined with a machine learning approach,
Convolutional Neural Networks (CNN). We demonstrate the
promising performance of the suggested analytics in detecting
the GIC impacts in power grids under a variety of grid
operating conditions. The proposed framework is featuring:
(i) resistive to harmonic distortion and background noise,
(ii) capable of detecting low-intensity GICs, and (iii) can be
algorithmically embedded within Phasor Measurement Units
(PMUs) and other intelligent electronic devices (IEDs) cur-
rently in place for online monitoring.

The rest of the paper is organized as follows: Section II
introduces the GICs impact modeling and the motivation to
feature extraction based on STFT and continuous WT. Section
III describes the proposed online GICs detection framework,
consisted of (i) feature extraction from the current signals via
pseudo-continuous wavelet transform (PCWT) and (ii) event
classification via CNN. Case studies and experimental results
are analyzed in Section IV to verify the performance of the
proposed GICs detection mechanism. And finally come the
conclusions in Section V.

II. BACKGROUND AND MOTIVATION

A. Overview of GICs Modeling

The GMD phenomenon introduces an earth magnetic field
change rate of usually below 1Hz [2]. Typically, the GICs can
be determined by assessing the DC network power flow as:

I = GV (1)

where G is the network bus admittance matrix, determined
by taking into account the three-phase signals in parallel, the
substation neutral buses, as well as the ground resistance.
Utilizing the approach presented in [1], the GMD introduces
voltages that can be approximated by

V = ENLN + EELE (2)

where EN and EE are the Northward and Eastward electric
field (V/km), respectively, and LN and LE are the Northward
and Eastward distance, respectively.

In transmission systems, Y-Y configuration transformers are
vulnerable to half-cycle saturation the most during the GMD
event. As graphically demonstrated in Fig. 1, this is because
the DC flux has the lowest reluctance path in such scenarios
and a semi-saturation can occur [18]. However, GICs alone
may not be able to cause a transformer half-cycle saturation
as (i) GICs intensity may be low and (ii) when the transformer
load level is small. According to [3], when a transformer is
injected with different levels of GICs, the harmonic magnitude
curves (in frequency domain) will differ significantly (see Fig.
2), thus the waveforms will change dramatically too. Such
behaviours in the waveforms will make the GICs detection

Fig. 1. Half-cycle saturation of a single-phase transformer due to GICs.
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Fig. 2. Excited harmonic current components in different levels of GICs.

process extremely difficult, calling for a well-thought and
accurate approach.

B. Power Waveform Modeling

As the current in the secondary winding of CTs can be
captured and assuming a balance three-phase system, the
power waveform in each phase can be represented as follows:

x(t) = Acos (ωt+ φ) (3)

where x(t) is the measured one-dimension (1-D) waveform;
A, ω, and φ are the instantaneous magnitude, fundamental fre-
quency, and phase angle in each phase, respectively. Although
the GICs cannot be measured directly, their impact can be
assessed on the DC saturation level of transformers. Because
GICs impacts are a set of harmonic components generated
only during the transformer half-cycle saturation. Thus, the
waveform can be expanded by Fourier series as

x(t) = A1cos (ω1t+ φ1) +
H∑
h=2

Ahcos(ωht+ φh)︸ ︷︷ ︸
Harmonic Components

(4)
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(a) Waveform (b) STFT (c) Haar

(d) DB4 (e) Morlet (f) Gaussian

Fig. 3. Comparison of the STFT vs. CWT: harmonic injection starts at t=20ms, with harmonic orders h=2, 3, 4, 5, 6 and magnitude of 0.02pu, 0.08pu,
0.02pu, 0.08pu, and 0.02pu, respectively.

where h is the order of harmonics; H is the maximum order
of harmonic of interest. Under a particular level of GICs,
different values of Ah and fh can be detected according to [3],
resulting in a unique set of patterns. A certain combination of
Ah for ωh (for h = 2, 3, 4, ..., H) will possibly be resulted,
even if some GICs-caused harmonics are influenced by those
generated from other sources. The second term in (4) will still
contain valuable information on the GICs impacts and, thus,
could be the main target for data fusion and pattern extraction.

For time-frequency analysis of the waveforms, short time
Fourier transform (STFT) [19], [20] would be one promising
approach facilitating the GICs impact detection. The STFT
offers a high measurement accuracy at the cost of high
computational complexity [21], [22]. Meanwhile, according to
[23]–[27], wavelet transform has shown speed advantages over
the STFT in time-frequency analysis, especially when applied
for feature extractions. The performance of different time-
frequency analysis techniques are demonstrated and compared
in Fig. 3. It can be seen from the spectrum in Fig. 3(b)
and scalograms in Fig. 3(c)-(f), that the feature extraction
outcomes through CWT are much more conspicuous than
those of STFT, while compromising the accuracy in frequency
measurements. Therefore, a joint hybrid application of WT and
STFT is pursued in this paper for waveform feature extraction
and the corresponding analysis.

C. CWT and Pseudo-CWT
The wavelet transform of a 1-D waveform is achieved by

computing the cross-correlation between the signal of interest
x(t) and designated wavelets. This process is defined by the
following equation:

X(ω|a, b) =
1√
a

∫ ∞
−∞

x(t)Ψ(
t− b
a

)dt (5)

where Ψ(t) is the mother wavelet when the scaling factors
a = 1 and the time shift b = 0 are set. Ψ( t−ba ) is the ”daughter

wavelets” of Ψ(t) with different selection of a and b [24],
[25]. In real applications where the discrete signal processing
is applied, both the integration interval and the number of
scaling factors are finite; therefore, the CWT becomes pseudo
continuous with a set of discrete scaling factors. Here, the
pseudo-CWT (PCWT) is defined as follows:

X[ω|ak, bk] =
1√
a

W−1∑
n=0

x[n]Ψ[
nTs − bk

ak
] (6)

where Ts denotes the sampling interval, and W stands for
the window (buffer) length. When applying PCWT, choosing
a proper wavelet and tuning the parameters correctly are
crucial as they will significantly affect the PCWT performance.
Furthermore, a set of proper parameters would reduce the
computational burden and improve the time efficiency, since
the online feature extraction mandates real-time considerations
when designing PCWT.

D. Convolutional Neural Networks

Once the features from waveforms are extracted, Convo-
lutional Neural Networks (CNNs) can be used as an event
detector. CNNs are artificial neural networks that are primarily
used to classify images based on their contents. The process
mainly focuses on representation learning, meanwhile this pro-
cess adapts the feature extractor automatically and has proven
successful in a wide range of image-related tasks [28]–[30].
In general, the implementation of the convolutional networks
is achieved by calculating cross-correlations as defined in the
following equation

sp(m,n) =
∑
u

∑
v

∑
w

Iu(m+ v, n+ w)Kp(v, w), (7)

where sp(m,n) denotes the output of the convolutional layer
at position (m,n) and p-th channel, Ku is the u-th convo-
lutional kernel, and Iu represents the u-th channel of the
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image/data volume. A complex convolutional layer consists
of small number of basic layers [31] and can be expressed by
the following functions:

I l = pool (σ(s)) , (8)

where I l represents the output volume of the l-th layer, σ(·)
denotes a non-linearity of the neurons, and pool(·) is a pooling
(down sampling) procedure. By stacking the convolutional
layers, the abstraction level of the network generally increases
[32]. The representations in the last layer in a CNN are usually
expanded to vectors and fed into the general fully-connected
layers. Cross-entropy is then used as the loss function.

III. PROPOSED FEATURE EXTRACTION AND GIC
DETECTION BY CNNS

As single-phase CTs can access the current waveforms
from the transmission lines, the GIC impacts can be evaluated
through CTs located in different locations. In this Section, the
assessment focuses on one CT modeled based on Fig. 1 and
Fig. 2. The approach is, however, generic enough to be applied
to different models and number of CTs across the system.

A. PCWT-based Feature Extraction during Transformer Half-
Cycle Saturation

Based on the half-cycle saturation waveform in Fig. 1,
which is a Gaussian-like curve, the Gaussian wavelet is
a natural candidate for the mother wavelet. The Gaussian
wavelet can be expressed as follows

gn(x) = (−1)n
dn

dxn
e−

x2

2 (9)

where n is the order of the Gaussian wavelet [33]. Accord-
ing to (5), the CWT with Gaussian mother wavelet can be
mathematically expressed as follows

Xg(ω|a, b) =
1√
Cgn

∫ ∞
−∞

x(t)gn(
t− b
a

)dt (10)

Cgn = 2π(n− 1)! (11)

When conducting Gaussian wavelet transform of order N
with scaling and shifting factors, (10) would be modified as

Xg(ω|a, b) =
1√
aCgN

N−1∑
n=0

[
dn

dtn
x(t)

d(N−n)

dt(N−n)
g0(

t− b
a

)]
+∞
−∞︸ ︷︷ ︸

zero

+
1√
aCgN

∫ ∞
−∞

dN

dtN
x(t)g0(

t− b
a

)dt

(12)

As x(t) only consists of sinusoidal waveforms, for a given
frequency ωh with Ah and θh, (12) can be rewritten as

Xg(ωh|a, b) =
Ah√
aCgN

∫ ∞
−∞

dN

dtN
cos(ωht+ θh) · e

−(t−b)2

2a2 dt

=
Ah

2
√
aCgN

∫ ∞
−∞

dN

dtN
[ej(ωht+θh) + e−j(ωht+θh)]e

−(t−b)2

2a2 dt

(13)

By applying Hubbard–Stratonovich transformation [34] and
using the rule of changing signs of integration limits, (13) can
be simplified as

Xg(ωh|a, b) =

=
Ahω

N
h√

aCgN
cos(ωhb+ θh +

Nπ

2
)

∫ ∞
−∞

e−
y2

2a2−jωhydy

=
Ahω

N
h√

(N − 1)!
cos(ωhb+ θh +

Nπ

2
)e−

a
2w

2
h

(14)

ωh, Ah, θh are constants for one harmonic component, and
N is also a constant when the order of the Gaussian wavelet
is selected. Only b controls the moment when |Xg(ωh|a, b)|
reaches maximum. The value of a controls the attenuation of
the selected frequency components, i.e., a large value of a
makes the amplitudes at higher frequencies attenuated rapidly
and those of the low frequencies slightly, since the exponent is
quadratic to ωh. This property would help tracking a narrow
bandwidth for the low-frequency components. On the other
hand, when a is small, a wide bandwidth of frequency compo-
nents will be extracted, and the high-frequency component will
be amplified by ωNh . These characteristics are very suitable for
feature extraction corresponding to a transformer saturation
event caused by GICs. As the GICs’ frequency is extremely
low, daughter wavelets with large a can detect it promisingly
while eliminating the influence of high frequencies. With
small value of a, however, the saturation features (harmonic
components) can be extracted all together and highlighted,
which provide the information on the DC saturation intensity.
Therefore, we chose the Gaussian wavelet to be used in PCWT
for the application of interest. Finally, the PCWT for feature
extraction to detect the GICs impacts can be easily obtained
by applying (6) to (12). All the parameter settings will be
introduced in Section III-C.

B. GICs Detection by CNNs

The overall framework for the proposed detection mecha-
nism is demonstrated in Fig. 4. First, PCWT with K number of
a and STFT in L time instants are applied sequentially. Then,
the scalogram and spectrogram will both be of K×L size and
carry the valuable information on the intensity of GICs. The
detection process could be converted as a supervised classifi-
cation problem on the scalograms. However, the classification
for the 2-D scalograms is challenging due to their high dimen-
sionality. Specifically, every frame of the obtained scalogram
and spectrogram has hundreds by hundreds pixels; such high
dimensional data is restrictive in most of the conventional
pattern classification approaches. We cast the event detection
(saturation caused by GICs) to an image classification problem
based on the scalogram and spectrogram; we propose a CNN-
based architecture to classify the images. The proposed CNN
offers a simple architecture that ensures an accurate detection,
yet fast and computationally effective. Our proposed CNN
consists of five layers: three convolutional (Conv.) layers and
two fully-connected (FC) layers; the specifications of the CNN
will be introduced in Section III-C. This framework can work
as a standalone event detector or classification tool in a PMU
to detect the GICs.
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Fig. 4. The general architecture of the proposed framework for GIC detection in power grids.

C. PCWT and CNN Parameter Setting

The sampling frequency used in this paper is Fs = 9600Hz,
which is sufficiently high to cover up to 50th order of
harmonics. The buffer size for the PCWT and STFT are both
set to 192 samples (20ms). A Gaussian wavelet with order of
8 is employed. The time shifting b for all Gaussian daughter
wavelets is set to be 10ms (96 samples) for the sake of
simplicity. The proposed scaling factor a is chosen to be a set
of scaling factors dyadic with 256 exponents ranging from 4 to
12. This is accomplished aiming to reduce the computational
burden associate with the scalogram generating while not
sacrificing the bandwidth coverage for feature extraction. The
scalograms have a duration of 40ms (385 samples).

The proposed CNN for the scalogram classification
is illustrated in Fig. 4 and has the following archi-
tecture: Input(256×385)–Conv(100, 5×11)–Max-pool(3×3)–
Conv(100, 5×5)–Max-pool(3×3)–Conv(64, 5×5)–FC(600)–
FC(3). A wide-shape kernel is chosen in the first convolutional
layer aiming to extract more information of the scalogram and
spectrogram along the time axis. The stride of the convolution
operation in the first layer is (2, 3), while that of the other
convolutional layers are (1, 1). Batch normalization [35] is
used in each Conv and FC layers except the last FC layer.
To prevent overfitting, dropout [36] is adopted in the third
convolutional layer and the first FC layer. Rectified Linear Unit
(ReLU) were chosen as nonlinearities in the neural network.
Cross-entropy are used as the loss function.

IV. CASE STUDY AND EXPERIMENTS

A. Test Scenarios Configuration

Three test cases are chosen from [37] to generate harmonics,
aiming to simulate interferences in real-life power grid op-
erating conditions and facilitate the performance evaluations:
harmonic distortions, out-of-band interferences, and harmonics
from nonlinear loads. The parameter specifications of the test
power waveforms for CNN training are shown in Table. I.
Each saturation scenario (AC saturation, DC saturation, and
non-saturation) is associated with the three test cases plus

TABLE I
SIMULATED TEST WAVEFORM PARAMETER SPECIFICATION

Test Case
Saturation Type

AC DC NO

Saturation level 0.001pu-0.15pu 0.001pu-0.15pu 0

Harmonic Distortion 0.5 %-10 % THD; random choose up to 50th order

Out-of-Band 10Hz to 120Hz; level 0.01pu-0.1pu

Nonlinear Load 1% to 20% of total load

Signal to Noise Ratio 30dB applied to all generated signal

a normal waveform. Therefore, 12 types of test waveforms
are generated in total. Each type has 1000 samples. All test
waveforms are polluted by Gaussian noises with a signal to
noise ratio (SNR) of 30dB to approximate the thermal and
measurement noises. All the parameters are uniformly located
in the designated ranges. Each type of events occurs within a
20ms simulation run-time window randomly and individually.
The transformer saturation model for waveform generation is
obtained according to Fig. 2.

12,000 samples of the wavelet scalogram and spectrogram
for four types of events are simulated in the MATLAB
environment, wherein 10,800 samples are used as the training
dataset, 1200 samples for validation, and 6,000 extra samples
are generated for testing. Adam [38] was employed as the
optimizer, which has initial learning rate of 1×10−3, β1 = 0.9,
and β2 = 0.999. The CNN was trained 120 epochs; in every
30 epochs, the learning rate decayed 1/10. The best validated
model was recorded and tested.

B. Experimental Results and Analysis

Three patterns generated by PCWT for AC and DC satura-
tion scenarios plus non-saturation condition are demonstrated
in Fig. 5. One can see that the scalograms generated by the
proposed PCWT successfully reveal unique features in such
scenarios: Fig. 5(b) shows consistent spikes indicating a full-
cycle saturation. Fig. 5(c) shows one spike only that stands for
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(a) Non-saturation with Harmonics (b) AC saturation (c) DC saturation

Fig. 5. Test waveform simulation results: (a) polluted with random harmonics; the AC (b) and DC (c) saturation level is 0.01pu; all events start at t=10ms.

TABLE II
ACCURACY PERFORMANCE OF THE TEST RESULTS

GIC (pu) 0-0.03 0.03-0.06 0.06-0.09 0.09-0.12 0.12-0.15 Overall
Hybrid∗ 73.93% 82.70% 85.15% 86.85% 87.02% 82.50%

*: PCWT + STFT

a half-cycle saturation caused by GICs. In real-world operating
conditions, the patterns in Fig. 5(a) can definitely affect the
classification results during AC and DC saturation. The reason
lies in the fact that the patterns in Fig. 5(a) would overlap those
in Fig. 5(b)(c), if harmonics and saturation occur at the same
time. Therefore, the performance of CNN needs to be verified
in such circumstances, in which the patterns are overlapped.

To verify the accuracy in different GIC levels, a quantization
test was conducted. The GIC severity is quantized to five
intervals as shown in Table II. The classification accuracy is
tested for each quantization interval separately. One can see
from Table II that the higher the GICs intensity, the higher the
detection accuracy. In total, the proposed framework success-
fully achieves a desired performance even under low-intensity
GICs, high harmonics, and elevated noises. Moreover, the
framework can obtain the detection results within 60ms (20ms
window size plus 40ms observation duration); therefore, the
framework can be applied to online monitoring platforms in
power transmission systems.

V. CONCLUSION

This paper aims to effectively detect GICs in power trans-
mission systems during the GMD events. Our proposed ap-
proach consists of a hybrid feature extraction using Gaussian
PCWT and STFT, and a CNN-based detection mechanism. Ex-
periments demonstrated that the proposed analytics achieved
a high accuracy for online detection of GICs under differ-
ent operating conditions. This framework would be installed
within PMUs and/or other IEDs that can capture the power
grid waveforms. Future work will focus on (i) applying the
proposed framework to a variety of CT saturation models, and
(ii) investigating the potential use of CNN or other machine
learning algorithms for GICs measurements.
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