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Abstract—Power grid operation continuously experiences state
transitions caused by the internal and external uncertainties, e.g.,
equipment failures and weather-driven faults. This prompts an
observation of different types of waveforms at the measurement
points (substations) in power systems captured by the phasor
measurement units (PMUs) and intelligent electronic devices
(IEDs) embedded with PMU functionality, e.g., digital relays and
fault recorders. The PMU should be, hence, equipped with either
one synchrophasor estimation algorithm (SEA) that is accurate
and robust to many different types of signals any time across the
network, or should adaptively select the promising SEA, among
an embedded suite of algorithms. This paper proposes a PMU-
embedded framework that can ensure real-time grid surveillance
and potentially enables adaptive selection of SEA for more
accurate synchrophasor estimation. Our proposed framework is
consisted of two components: (i) a pseudo continuous quadrature
wavelet transform (PCQ-WT) algorithm using a modified Gabor
wavelet transform, which generates the featured-scalograms;
and (ii) a convolutional neural network (CNN), that classifies
the events based on the extracted features in the scalograms.
Our experiments demonstrate that the proposed framework
achieves state-of-the-art classification accuracy on multiple types
of prevailing events in power grids, through which an enhanced
grid-scale situational awareness in real-time can be realized.

Index Terms—Convolutional Neural Network (CNN); feature
extraction; phasor measurement unit (PMU); waveform classifi-
cation; wavelet transform (WT).

I. INTRODUCTION

With the widespread deployment of synchrophasor tech-
nology in modern power grids, system monitoring and con-
trol settings have been revolutionized into a new era with
high-resolution measurements, fulfilling an enhanced grid
situational awareness [1]–[4]. Synchrophasor measurements,
captured across the network via phasor measurement units
(PMUs), have transformed many applications, e.g., power sys-
tem model validation, state-estimation, dynamic stability, on-
line monitoring, protection, control of the grid, and post-event
analysis [5]–[7]. IEEE standard C37.118.1-2011 [8] has de-
fined the PMU expected outputs—i.e., magnitude, phase angle,
frequency, and rate of change of frequency (ROCOF)—and
their corresponding desirable accuracy. These outputs are
obtained from synchrophasor estimation algorithms (SEAs)
which are primarily driven by mathematical approximations.
In most cases, and irrespective of the focused application,
marketplace PMUs are typically furnished with one SEA tool,
each unleashing distinctive advantages and limitations, solely
valid to one or a few certain applications [9]–[12]. Typically,
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the waveforms fed into PMUs have variant behaviors; for
instance, phasor magnitudes and phase angles go through step
changes during faults, and the waveform measurements could
be noisy. Besides, unbalanced load, voltage surge or sag,
harmonics, and frequency drift are also common phenomena
in electrical power networks [13]–[15]. In dealing with the
above conditions, dynamic SEA based on time-domain signal
processing techniques were applied. Some research efforts
have proposed a single PMU equipped with only one sophisti-
cated SEA, which is deemed to respond to various prevailing
conditions [16]–[18]. Laboratory tests and field observations
have revealed how inefficient the PMU measurements could
be, if this ”one-size-fits-all” SEA is applied to capture both
static and dynamic features and peculiarities, when facing
different operating states [19]–[21]. To meet the growing de-
mand for high-speed, low-latency, and yet absolutely accurate
measurements in PMUs, a more efficient mechanism that
provides online event detection and assists selecting the right
SEA at the right time is desired.

Waveform patterns and signatures can be extracted from
voltage and current signals via wavelet transforms (WT),
where transitions of power grid to different operating states
and events reveal unique features in time-frequency domain
[13], [22], [23]. Built on the WT-extracted features, a machine
learning mechanism can be employed to detect and classify
the events scalograms [14], [24]. Motivated by the success of
CWT in signal processing and convolutional neural networks
(CNNs) in pattern recognition, we propose a novel online
surveillance framework that classifies different events in power
grids and potentially enables an adaptive SEA selection in
PMUs for more accurate phasor measurements. The paper’s
main contributions are as follows:

• We propose a pseudo-continuous quadrature wavelet
transform (PCQ-WT) that effectively captures the power
waveform features corresponding to different events.

• A CNN mechanism is developed to classify the scalo-
grams generated by PCQ-WT, achieving a high event
classification accuracy (92.84±1.20%) for twelve distinct
modes of grid prevailing conditions.

• The combination algorithms of the two steps process
the input signals in a real-time manner (2.24±0.54 ms),
which leaves a large time margin to the subsequent SEA
modules within PMUs to function.

• The proposed framework shares the exact same input
signals of the PMU, with no additional devices or in-
vestments, making it an economically viable technology
to be embedded within the existing PMUs.
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This paper is organized as the following: Section II intro-
duces a background on continuous wavelet transforms (CWT)
and the pattern classification through convolutional neural net-
works (CNNs). Section III details the proposed online surveil-
lance framework, consisted of (i) feature extraction from
voltage and current signals via pseudo-continuous quadrature
wavelet transform (PCQ-WT), and (ii) event classification via
CNN. Case studies and experiment results are analyzed in
Section IV, and the conclusions come in Section V.

II. BACKGROUNDS AND MOTIVATIONS

A. Power Waveform Modeling

To solve a classification problem, a mathematical represen-
tation of signals in power grid is needed. The three phase time-
domain sinusoidal signals fed into the PMU can be represented
by the following:

xph(t) = Aph(t)cos

(
2π

∫ t

0

F (τ)dτ + φph(t)

)
(1)

where xph(t) is a one-dimension (1-D) waveform measured
from each phase; Aph(t), F (τ), and φph(t) are the instanta-
neous magnitude, fundamental frequency, and phase angle in
each phase respectively. During both transient and steady state,
the waveform in each phase can be expressed by a summation
of different orders of harmonic components. Thus, the actual
waveform in each phase is

xph(t) =

H∑
h=1

Aph,h(t)cos

(
2π

∫ t

0

Fh(τ)dτ + φph,h(t)

)
(2)

where h is the order of harmonics, and H is the maximum
order of harmonic of interest. In a particular grid operation
condition, different values of Aph,h(t), Fh(τ), φph,h(t) will
appear in the three-phase power signal, which lead to patterns
and peculiarities. Therefore, an event can be detected and
classified accordingly. To simplify the time-domain sinusoidal
signals analysis and without acquiring the rotating reference
frame in Park transformation [25], Clarke transformation is
applied to convert the three phase signal from ABC to αβ-
frame [26] by the following equations:

xαβ(t) = xα(t) + jxβ(t), (3)

and [
xα(t)
xβ(t)

]
=

[ 2
3 − 1

3 − 1
3

0
√

3
3 −

√
3

3

]xA(t)
xB(t)
xC(t)

 (4)

Since power waveforms contain different frequency com-
ponents, multi-resolution waveform analysis techniques are
suitable to extract the features, i.e., amplitude, frequency
and phase. The most commonly-used technique is short-time
Fourier transform (STFT) [2], [3], [27], [28] and wavelet
analysis [29]–[31]. However studies show that STFT is at-
tributed a higher computational burden and cost more time
which leads to a lower time resolution than wavelet analysis
in time-frequency domains [32], [33]. Also, comparing the
spectrogram in Fig. 1(a) and (b) with the scalogram of
CWT in Fig. 1(c)(d)(e) and (f), it can be seen that STFT
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Fig. 1. Comparison of the STFT vs. Morlet CWT vs. DB4 CWT during:
(a),(c),(e) 2Hz frequency jump; (b),(d),(f) 40◦ phase jump.

outperforms CWT in frequency accuracy, while CWT provides
more conspicuous results for feature extraction. Therefore,
wavelet analysis is chosen as the mathematical tool of interest
for feature extraction and online waveform monitoring.

B. CWT and Pseudo-CWT (PCWT)

The wavelet transform is obtained by computing the cross-
correlation between the signal of interest—xαβ(t) and desig-
nated wavelets. This process is defined as follows:

Xαβ(ω|a, b) =
1√
|a|

∫ ∞
−∞

xαβ(t)Ψ*(
t− b
a

)dt (5)

where Ψ(t) is the mother wavelet, * denotes the complex
conjugate, a and b are the scaling factors and the time shift, and
Ψ( t−ba ) is one of the ”daughter wavelets” of Ψ(t) [34], [35].
With different selections of a and b, a wavelet bank is then
determined. By selecting proper intervals for the continuous
scaling factor along with the time shift, a continuous-wavelet
transform (CWT) is achieved [36], [37]. In a PMU, the real-
time signals are sampled, and discrete signal processing is
actually applied. Due to the limited computational capacity
of hardware, the number of scaling factors are finite, thus
the mathematical behavior of the CWT within the processor
is pseudo continuous with a set of discrete scaling factors.
So, here, the pseudo-CWT (PCWT) with one of the discrete
scaling factors is defined as follows:

Xαβ [ω|ak, bk] =
1√
|ak|

W−1∑
n=0

xαβ [n]Ψ∗[
nTs − bk

ak
] (6)

where Ts denotes the sampling interval, and W stands for
the window (buffer) length. In a CWT, each daughter wavelet
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needs to cover a designated frequency range that reflects the
features in time-frequency analysis. The central frequency of
the daughter wavelets can be approximated by the following
relationship with the scaling factor:

f = Fc/ak (7)

where FC is the central frequency of the mother wavelet [36].
When a vector of scaling factors with length K is chosen, the
wavelet bank Ψ and the extracted features at time instant n
are expressed by the following:

ΨK×W =



Ψ[nTs−b1
a1

]
...

Ψ[nTs−bk
ak

]
...

Ψ[nTs−bK
aK

]


, XK×1

ω [n] =


Xω1(a1, b1)

...
Xωk(ak, bk)

...
XωK(aK , bK)

 .
(8)

To cover a sufficiently wide range of frequency and provide
adequate pattern information for time-frequency analysis on
any given operating condition, the central frequency of mother
wavelets FC and largest scaling factor aK must satisfy the
following condition:

Fc
aK

< f0 < Fc, (9)

where f0 is the frequency of the signal of interest. Fc needs to
be chosen from a higher frequency range than the maximum
frequency of interest and scaled down by ak. Hence, as ak
increases, the corresponding frequency of the PCWT output
decreases in the frequency domain.

Once the scaling factors are chosen, then (8) is able to
generate the wavelet bank and a series time bin of XK×1

ω

along the time instant, i.e. a scalogram of PCWT is obtained.

C. Convolutional Neural Networks (CNNs)

At this stage, we consider the obtained scalogram as 2-
D images, and the process of event classification turns to
an image classification. The conventional paradigm for image
classification is to manually design the feature extractor and
reduce the dimensionality of the data, the second phase is to
employ a classifier to classify the lower dimensional features.
This paradigm highly depends on the design of the feature
extractor, and manually designing features for a complex
task requires a great deal of human time and effort; it can
take decades for an entire community of researchers [38].
In contrast, Convolutional Neural Networks (CNNs) are able
to learn the feature extractor automatically and have been
proven very successful in the broad image-related tasks [39]–
[43]. By definition, CNNs are simply neural networks that use
convolution in place of general matrix multiplication in that
least on of their layers [38]. In general, the implementation of
the convolution are actually cross-correlations and defined by

sp(m,n) =
∑
u

∑
v

∑
w

Iu(m+ v, n+ w)Kp(v, w), (10)

where sp(m,n) is the output of the convolutional layer at
position (m,n) and p-th channel, Iu is the u-th channel of the

image/data volume, and Ku is the u-th convolutional kernel.
A complex convolutional layer is composed by small number
of complex layers [38] and expressed by the following:

I l = pool (σ(s)) , (11)

where I l represents the output volume of the l-th layer, σ(·)
is the non-linearity of the neurons, and pool(·) is a down
sampling procedure. By stacking the convolutional layers, the
abstraction capacity of the network generally increases [44].

The representations of the last convolutional layer are
expanded to vectors and processed by the general fully-
connected layers, which transform the representations with
more nonlinearities and into spaces with different (higher or
lower) dimensions. The final layer of a CNN usually reduces
the dimensionality of the representations to the number of the
classes; cross-entropy [45] is then employed to measure the
“goodness” of the classification (Kullback-Leibler divergence
between the predicted distribution and the target distribution).
Finally, gradients of the cross-entropy loss function with
respect to the parameters in the CNN are used to train the
CNN by back-propagation.

III. PROPOSED FEATURE EXTRACTION AND EVENT
CLASSIFICATION BY CNNS

A. PCQ-WT Based Feature Extraction

Gabor wavelets have been widely used in two-dimension
(2-D) pattern recognition [46]–[48]. In order to simplify the
design and increase the computational efficiency, a modified
complex Gabor wavelet from [48] is adopted in this paper and
written as

Ψ(t) = exp (jωc(t− b))︸ ︷︷ ︸
Periodic Component

· exp
(
− (t− b)2

α2
0

)
︸ ︷︷ ︸

Gaussian Envelope

(12)

where wc is the central frequency in radiant. The Fourier
transform of this Gabor wavelet is

FΨ(ω) = α0

√
π · exp(−jωb) · exp(−α

2
0

4
(ω − ωc)2) (13)

One can see that the Fourier transform of Gabor wavelet is
also a function on the theme of Gabor wavelet. Although they
do not have the orthogonal property, because of

|FΨ(ωc ± ε)| 6= 0, (14)

where ε is a small value; according to (13), this Gabor
wavelet has a characteristic of predictable narrow-bandwidth.
By properly selecting α0, one of the PCQ-WT can cover
a desired range of frequencies. And the time shift b plays
no magnitude impact on (13) and (14). Therefore to ease
the derivation, let b = 0, then the CWT of Gabor wavelet
computation turns to

Xαβ(ω0|a, b = 0) =

∫ ∞
−∞

xαβ(t)Ψ*(
t

a
)dτ

=

∫ ∞
−∞

exp

(
j(ωo −

ωc
a

)t− t2

a2α2
0

)
dτ

(15)
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Fig. 2. The proposed classification CNN architecture for the scalogram extracted from PCQ-WT. J is the cross-entropy loss, T l is the true probability
distribution over labels and Ol is the predicted probability distribution by the networks [45].

According to Hubbard–Stratonovich transformation [49]:

exp(−α
2
x2) =

√
1

2πα

∫ ∞
−∞

exp
(
− y2

2α − jxy
)

dy (16)

The CWT of Gabor wavelet in (15) becomes

Xαβ(ω0|a, b = 0) = aα0

√
πexp

(
−α

2
0

4
(aω0 − ωc)2

)
. (17)

It can be seen that when ω0 = ωc/a, (17) reaches its
maximum, the dominant feature of the expected frequency
is revealed. To make each frequency of interest sharing an
equivalent maximal magnitude, make

aα0 = ωc/γ, (18)

where γ is a constant. By this expression and according to
(12), the Gaussian envelope in Gabor wavelet is adaptive to
different frequencies. The discrete form of the Gabor wavelet
used in this paper is

Ψ[n|ak, bk] = exp

(
j
ωcTs(n− bk)

ak

)
exp

(
−T

2
s (n− bk)2

a2
kα

2
0

)
,

(19)
When applying the complex Gabor wavelet with a set of
discrete scaling factors, we achieve the proposed PCQ-WT,
and it can be written as

Xαβ(ωk|ak, bk = 0) =
W−1∑
n=0

xαβ [n]Ψ*[−Tsm
ak

]

=
W−1∑
n=0

xαβ [n]exp

(
−j ωc

ak
Tsn−

T 2
s n

2

a2
kα

2
0

)
.

(20)

If one determines the frequencies of interest and designs the
Gabor wavelet bank properly, a vector Xαβ, ω that consists of
a set of PCQ-WTs can be obtained, and it is able to conduct
time-frequency analysis and generate scalograms, extracting
features from the waveform in frequencies of interest.

B. Event Classification by CNNs

Pursuing development of an event detection mechanism in
power systems, one needs to understand that the scalograms

of the waveforms generated by PCQ-WT convey valuable
information on the events; the process of event detection
is therefore converted to a supervised classification problem
on the scalograms. However, the classification for the 2-
D scalograms is challenging due to their high dimensional-
ity. Specifically, every frame of the obtained scalogram has
scales×time bins dimension (usually hundreds by hundreds);
such high dimensional data is prohibitive for most of the
conventional pattern classification approaches. We treat the
PCQ-WT scalograms as 2-D images and propose a CNN-based
architecture to classify the events concealed in the scalograms
(images). As the scalogram classification is not with very high
abstraction level, we did not transfer any very deep neural
networks to the task; instead, the proposed CNN has a simple
architecture that meets the requirements of a synchrophasor,
yet with very fast test times.

Our proposed CNN contains five layers: three convolu-
tional (Conv.) layers and two fully-connected (FC) layers.
The architecture of the CNN can be seen in Fig. 2, and
its specifications will be introduced in Section IV-B. The
overall proposed online surveillance framework embedded
within PMUs is demonstrated in Fig. 3. This framework can
work as an standalone event detection and classification tool
within PMU, or it can assist the phasor processor to select
a proper SEA, if a set of SEAs were equipped and available
within the PMU.

IV. CASE STUDY AND EXPERIMENTS

A. PCQ-WT Parameter Settings

The sampling frequency we used in this paper is Fs =
9600Hz. Up to 50th order (3000Hz) of harmonic is considered;
therefore, mathematically, a frequency spectrum that ranges
from 1Hz to 3000Hz is requisite. This paper chooses the
mother wavelet’s central frequency as 0.32 times of Fs, in
other words Fc = 0.32 (normalized) for PCQ-WT. The scaling
factor should be in the range of [1, 3072]. However, the total
3072 of PCQ-WT could lead to a high computational burden
and large memory demanding; hence, a down-sampling of the
scaling factor is much preferred. As the power waveform has a
main energy concentration at around 60Hz, this frequency has
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Fig. 3. Diagram of the proposed framework embedded within PMU.

TABLE I
PMU INPUT TEST WAVEFORM PARAMETER SPECIFICATION

Test Name Input Range Test Name Input Range

Signal to Noise Ratio (SNR)* 40dB Frequency Jump -5Hz to 5Hz

Magnitude Jump 0.1-2pu Phase Jump ±π/18 radians

Harmonic Distortion 0.5%-10%THD; order up to 50th Out-of-Band Interference 10Hz to 120Hz; level 0.01-0.1pu

Amplitude Modulation 0.1Hz to 5Hz; level 0.005-0.1pu Angle Modulation 0.1Hz to 5Hz; level 0.005-0.1pu

Frequency Ramp ±0.01Hz/s to ±1Hz/s, within ±5Hz Single-line-to-ground (SLG) fault Magnitude drop 0.2-1pu

Line-to-line (LL) fault Magnitude drop 0.1-1pu** Line-to-line-to-ground (LLG) fault Magnitude drop 0.1-1pu

*Occurs in all test signals
**Phase shift occurs at lines with faults

(a)

Fig. 4. Spectrum of the proposed wavelet bank, the scaling factor is plotted
by log2.

gained the most attention during monitoring. So, we chose
to compress the high frequency range and neglect the low
frequency portion; a dyadic scaling factor range [1, 256] is
chosen. Finally, we set the value of the constant γ = 2
and chose a fixed window size with 20ms (192 time bins)
associated with a fixed time shift bk = 100. By setting these
parameters, the PCQ-WT used in our experiments is obtained
according to (19). The corresponding spectrum of the Gabor
wavelet bank is shown in Fig. 4. The final scalogram fed into
the CNN has a duration of 40ms (385 time bins) including
one historical window.

The test power waveforms’ parameters specification for
CNN training are selected according to [19]. All test wave-

forms are polluted by Gaussian background noise with a signal
to noise ratio of 40dB. With the eleven types of test waveforms
plus a normal waveform, a total twelve types of waveforms
are simulated. Each type of waveform has been generated
randomly according to the parameter specifications in Table. I.
The input parameters are uniformly located in the designated
ranges. The occurrence time of events is randomly located
within the 20ms simulation run-time window.

B. Proposed CNN Configuration

As can be seen in Fig. 2, the CNN for the scalogram
classification has the following architecture: Input(256×385)–
Conv(100, 5×11)–Max-pool(3×3)–Conv(100, 5×5)–Max-
pool(3×3)–Conv(64, 5×5)–FC(600)–FC(12). Unlike the or-
dinary images which have homogeneous units on the two axes,
the axes of scalograms are with different units. We chose a
wide-shape kernel in the first convolutional layer that could
extract more information for transitions of the scalogram along
the time axis, and the stride of the convolution operation in
the first layer is (2, 3)—other convolutional layers’ strides are
(1, 1). Besides the last FC layer, batch normalization [50] is
used in each Conv and FC layers. Dropout [51] was adopted in
the third convolutional layer and the first FC layer to prevent
over-fitting. Rectified Linear Unit (ReLU) were chosen as
nonlinearities in the neural net. The CNN used cross-entropy
as the loss function.
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Fig. 5. Test waveform simulation results: (a) a 2Hz frequency jump occurs
at t = 10 ms, (b) a high resistance line-to-line fault happens at t = 10 ms,
(c) harmonic waves with orders of 5, 7, 9 and 11 are injected at t = 10 ms.

We experimented 120,000 samples of the wavelet scalogram
for twelve types of events are simulated in the Matlab environ-
ment, wherein 96,000 samples are used as the training dataset,
12,000 samples for validation, and 12,000 for testing. We used
Adam [52] as the optimizer, which has initialized learning rate
of 1×10−3, β1 = 0.9, and β2 = 0.999. The CNN was trained
120 epochs, and the learning rate was decayed 1/10 in every
30 epochs. The best validated model was recorded and tested.

C. Experimental Results and Analysis

Three patterns extracted by PCQ-WT from three selected
events are demonstrated in Fig. 5. One can see, from Figure
5(a), that the magnitude of the highest energy concentration
which stands for fundamental frequency in the scalogram
remains almost constant except at t = 15 ms which is 5 ms
later after a frequency jump occurs, a small drop of of the
peak can be observed. Among the high frequency range—
scaling factor from 1 to 128—the pattern appears almost
immediately as the event happens. Figure 5(b) shows a pattern
caused by a high resistance line-to-line fault. This pattern
has different features comparing to Fig. 5(a), and the highest
energy concentration part has a significant drop after the fault
happens. Similarly, this drop is around 5ms after the fault; the
features in the high frequency range also show up immediately.
When harmonics exist, on can see that the features in the
high frequency range are still unique in Fig. 5(c), and the
fundamental frequency feature remains unchanged. Similar to
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Fig. 6. The confusion matrix for the best validation results.

the events in Fig. 5(a) and (b), the harmonic injection can be
detected almost immediately.

We trained the CNN that classifies the scalograms five
times. The best test results are summarized in the confusion
matrix (Fig. 6), and the best test classification accuracy is
92.84±1.20% (mean±std). As a time-critical infrastructure, a
PMU (for 60Hz system) usually has to process the sampled
signal and report the phasor measurement results at the rate
of 60 frames/sec [8]. The computational time of the PCQ-
WT and CNN should be investigated. We used a workstation
with an Intel Core i7-8700K CPU and Nvidia GeForce GTX
1080Ti GPU as the computational platform; Matlab 2016b
and Pytorch 0.4.1 [53] as the implementation tools for PCQ-
WT and CNN, respectively. The 12,000 test samples were
adopted for testing the computational time of the proposed
CNN. As a result, generating a 256×385 scalogram by PCQ-
WT takes 1.20±0.23 ms, and the CNN takes 1.04±0.31 ms to
process every scalogram. Therefore, the in-total computational
time of our proposed framework is 1.24 ± 0.54. In this
timing experiment, the timer starts from when the data were
loaded into the CPU and GPU memory and ends when the
classification results were given out. The test uses 32-bit
precision. This short computational time satisfies the real-time
constraints with large margin and leaves plenty of time to the
subsequent SEA analytics to function.

From Fig. 6, it can be seen that for most test waveforms, the
proposed framework detects the event accurately. However, the
frequency jump test case has the lowest accuracy; the reason is
that the range of frequency jump in simulations is assumed to
be within [-5, 5] Hz. Thus, the values of frequency jump could
be in the vicinity of zero; in such circumstances, the features
in the scalogram is too weak to be detected by the CNN, and
these instances can be featured a ”normal” signature as the
frequency jump step is extremely small.
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The classification accuracy of amplitude and angle modula-
tion are not ideal by still acceptable. The explanations for the
miss-classifications on these two categories could be twofold:
(i) The physical duration in a scalogram proved to CNN is 40
ms, which is too short to capture the entire transition patterns;
(ii) The lower the modulation frequencies are, the smaller the
modulation magnitudes appear. The above explanations are
mathematically explained in the following:

xαβ(t) =(1 +M∆(t− t∆) sin(ω∆(t− t∆)t)︸ ︷︷ ︸
Modulation

)

· cos

(
2π

∫ t

0

F (τ)dτ + φ(t)

) (21)

M∆(t) =

{
CM t > 0, CM ∈ [0.005, 0.1]
0 t < 0

ω∆(t) =

{
CA t > 0, CA/2π ∈ [0.1, 5]
0 t < 0

(22)

where M∆(t) and ω∆(t) are the modulation magnitude and
frequency, respectively; and t∆ is the event occurrence point.
As the duration is 40 ms, i.e., tend = 40 ms, and t∆ should
satisfy 0 < t∆ < 40 so that the event can be shown in the
scalogram, thus tend − t∆ turns into a very small value. With
small CM and CA, the modulation can be written as

Mod(t) = CM sin(2πCA(t− t∆))

≈ 2πCMCA(t− t∆)

≈ 0, t ∈ [t∆, tend]

(23)

From (23), one can see that if the event occurs at a time that is
very close to tend, the modulation Mod(t) is extremely small
under the condition that CM and CA are small; meanwhile, the
duration of modulation in the scalogram is very short. Thus,
a scalogram with 40 ms duration would not contain sufficient
features for the occurrence of amplitude modulation, and the
classification accuracy for such events are relatively lower than
the others. Similar arguments hold for analyzing the results
under angle modulation scenarios.

Thus, increasing the window size and the modulation
strength may be beneficial to the classification accuracy, but
the overall performance, especially for the real-time capacity
of the PMU measurement, is harmed. A trade-off between
the awareness and the accuracy transients exists here. As the
proposed scheme aims to be deployed as a fast online grid
monitoring tool and an awareness mechanism to assist the
PMUs selecting an appropriate SEAs, we kept the parameters
that are specified in Subsection IV-A.

V. CONCLUSION

This paper introduced novel PMU-embedded analytics for
power grid online surveillance, that consists of the PCQ-
WT feature extraction and CNN-based event classification
mechanisms. The proposed framework aims to effectively
extract the waveform features and efficiently classify multiple
types of events in the grid. Our experiments demonstrated that
the proposed analytics achieved high accuracy for real-time
event classification. This framework would be a foundation for
intelligent PMUs that could adaptively select an appropriate

SEA and achieve higher phasor measurement accuracy. Future
work will be focused on integration of SEAs in the proposed
framework to leverage the PMU overall functionality.
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