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Abstract

Distributed Intelligence for Online Situational Awareness and
Resilience in Power Grids

Electric power grids constantly confront potential fast- and slow-dynamic

disruptions ranging from unpredictable faults, weather-driven disasters,

malicious cybersecurity attacks, load variations, among others. With the

growing demand to ensure electricity with higher quality to the end-use

customers and mission-critical systems and services, enhancing the re-

silience and operational endurance of the power delivery infrastructure

against disruptive events and reducing and mitigating such threatening

risks is urgently needed. This calls for fundamental advancements of new,

fast, and efficient analytical frameworks for online situational awareness

in power grids that can accurately measure and effectively monitor, detect,

adapt and respond to a wide range of threats.

We first propose an inclusive next-generation smart sensor technology

embedded with novel and sophisticated data-driven analytics for online

surveillance and situational awareness in power grids. The proposed ana-

lytics take the electrical signals as the input and unlock the full potential

in advanced signal processing and machine learning for real-time pattern

recognition, event detection and classification. A robust measurement

mechanism is housed within the proposed sensor technology that will be

triggered following a detected event and guides on the adaptive selection of

the best-fit and most accurate synchrophasor estimation algorithms at all

times. Embedding such analytics within the sensors and closer to where

the data is generated, the proposed distributed intelligence mechanism

mitigates the potential risks to communication failures and latencies, as
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well as malicious cyber threats, which would otherwise compromise the

trustworthiness of the end-use applications in distant control centers. Our

experiments demonstrate that the introduced sensor technology achieves a

promising event detection and classification accuracy with improved qual-

ity of measurements, collectively resulting in enhanced online situational

awareness in power grids. Also, the performance of the proposed smart

sensor analytic is tested and verified in several event detection applications

in the power grid.
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Chapter 1: INTRODUCTION

1.1 Background

New North American Electricity Reliability Corporation (NERC) power

system planning performance standard TPL-0014/0040a enforced in 2016

states that “studies shall be performed to assess the impact of the extreme

events [4].” The electricity grid is constantly exposed to potential hazards

ranging from weather-driven natural disasters to malicious cybersecurity at-

tacks [5]. Due to numerous factors such as rapid deployment of intermittent

renewable generation, growing demand to ensure higher quality electricity

to end customers, and intensified public focus and regulatory oversights,

safeguarding the nation’s electric power grid and ensuring a continuous,

reliable, and affordable supply of energy are among the top priorities for

the electric power industry. Hence, resilience of the electricity grid and its

capacity to withstand unexpected extreme events has become more and

more critical for peoples’ well-being and every aspect of our economy [6–8].

To improve the resilience of the electricity grid, situational awareness of

the power grid to support decision making under uncertainty and quantify

the corresponding impacts become significantly crucial. The fundamental

definition of the term "situational awareness" in the context of power grid

operation is "understanding the current environment and being able to ac-

curately anticipate future problems to enable effective actions" [9]. Due to

the increasing size and operational complexity of modern power systems,

system operators often have difficulties forming a complete and accurate

picture of the state of (the part of) the system for which they are responsible.

These difficulties may prevent them from achieving the level of situational

1



awareness that is needed to make the right decisions and respond effectively

to an incident. Inadequate situational awareness has indeed been identified

as one contributing factor in several recent large electrical disturbances

and black outs worldwide.

With the rapid proliferation of distributed energy resources in the power

grid, more observability and control systems will be needed to accurately

monitor the more-than–ever sophisticated cyber-physical power grid. In

1988, the invention of the Phasor Measurement Units (PMU) by Dr. Arun G.

Phadke and Dr. James S. Thorp at Virginia Tech transformed the situational

awareness of the power grid into a new level. With the nowadays widespread

deployment of synchrophasor technology in modern power grids, system

monitoring and control settings have been revolutionized into a new era

with high-resolution measurements [10–15]. Synchrophasor measurements,

captured across the network via PMUs, have transformed many applications,

e.g., power system model validation, state-estimation, dynamic stability,

online monitoring, protection and control functions, and post-event analysis

[16,17]. In Figure. 1.1, a block diagram of a typical PMU is demonstrated;

this device measures the electrical waveforms in an electric power grid where

a common time source, usually from GPS, is used for synchronization. The

measurements from PMUs across the power network are gathered at the

control center through communication channels.

With the growing demand to ensure electricity with higher quality to the

end-use customers and mission-critical systems and services, enhancing

the power delivery infrastructure resilience and operational endurance

against disruptive events while reducing and mitigating such threatening

risks is urgently needed. This calls for fundamental advancements of new,

fast, and efficient analytical frameworks for online situational awareness

2



Communication 
Channel

Figure 1.1: Block diagram of a typical phasor measurement unit (PMU).

in power grids that can accurately measure and effectively monitor, detect,

adapt and respond to a wide range of threats.

This rest of this chapter is organized as follows. Section 1.2 offers an

introduction to PMUs and details of this sensor technology. Problems and

challenges with the existing PMUs are presented in Section 1.3. Aiming at

effectively dealing with the challenges and issues in the existing technologies

and state-of-the-art solutions from the literature, Section 1.4 lists the

research objectives of this dissertation. At last, the dissertation outline is

presented in Section 1.5.

1.2 An Introduction to Synchrophasor Technology

The PMU network is built to be a data gathering system in power grids and

significantly improves the monitoring capabilities of the grid and analyzing

power system dynamics. As PMUs are installed throughout the electricity

system, the Phasor Data Concentrators (PDCs) are used to collect the infor-

mation and a Supervisory Control And Data Acquisition (SCADA) system

at the central control facility utilizes the data for protection, control, and

3



Figure 1.2: PMU System Architecture in Power Systems [1]

operation of the power grid. The existing monitoring and control paradigms

in power systems are primarily based on centralized architectures. As it

is demonstrated in Figure 1.2, the sensing landscape consists of locally

distributed PMU sensors, the measurements from which are collected in

distant control centers for monitoring and control decision making [18].

Additionally, the trustworthiness of the control center functions heavily

relies on accurate synchrophasor measurements from PMU sensors; these

outputs are obtained from synchrophasor estimation algorithms (SEAs)

embedded within the PMUs which are primarily driven by mathematical

approximations. For instance, Discrete Fourier Transform, Kalman Filter-

ing, Adaptive Filtering, Newton approximations, Phase-Locked Loops, and

many other variations exist [19–24]. IEEE standard C37.118.1-2011 [25]

has defined the expected outputs—i.e., magnitude, phase angle, frequency,

and rate of change of frequency (ROCOF)—and their corresponding desir-

able accuracy. This current practice relies heavily on reliable and secure

communication gateways: if the communication channels are lost (due

to failures, natural disasters, or man-made cyber-attacks) or have delays

(due to network congestion, poor channel quality, etc.), the control center

4



analytics’ accuracy and application trustworthiness will be compromised or

will be attributed a latency [26,27]. In most cases, and irrespective of the

focused end-use application utilizing the measurements, marketplace PMUs

are typically furnished with “only one” SEA tool, each unleashing distinctive

advantages and limitations, and are solely accurate for one or a few certain

applications [28,29]. This is because the waveforms fed into such sensors

have typically variant behaviors (e.g., during faults, unbalanced loads, volt-

age surge or sag, harmonics, etc) [30,31]. Also, different applications may

enforce different response time and accuracy requirements. Some research

efforts proposed a single PMU equipped with only one sophisticated SEA,

which is deemed to respond to variant conditions in the grid [32,33].

From a practical perspective, large deployment of PMU sensors brings

about a few concerns: (i) the massive PMU data in wide-area power systems

is hard to process and store in real time, (ii) communication availability and

reliability is hard to maintain for wide area measurement systems (WAMS),

(iii) power system monitoring requires high-resolution data, which could

be compromised by communication latencies. Approaches for PMU data

dimensionality reduction have been introduced in [34–36] to mitigate the

high computational burden of the control center applications in processing

large volumes of data. Also, different techniques for PMU data compression

are reported in [37–40]. Also, to deal with the data loss or delays in PMU

WAMS, researchers explored different methods to evaluate and quantify

the sensing and monitoring accuracy performance under scenarios with

missing PMU data [41–43].

5



1.3 Problem Statement

The electricity grid is constantly exposed, and yet vulnerable, to a wide

range of threats, some foreseeable and some unpredictable random in nature.

PMUs should be able to provide accurate and timely measurements under

various grid operating conditions. However, it has been demonstrated in

the literature that:

• A pre-installed synchrophasor estimation algorithm (SEA) inside the

PMU sensors needs to be chosen carefully or tuned at times to meet

the performance requirements of the end-use applications employing

the measurements [32,33].

• While exposed to different operating conditions in the power grid, a

particular SEA may best fit one certain type of event and not all.

• PMUs do not have the capability to provide event detection functionali-

ties based on the phasor measurements or input electrical waveforms.

• An SEA can be tuned with distinct parameters, making it extremely

difficult to achieve the desired accuracy at all times.

To archive adequate grid monitoring performance, the PMU synchrophasor

measurement quality should always meet the standard requirements; how-

ever, laboratory tests and field observations have revealed the inefficiency of

the existing PMU measurements. Even if “one-size-fits-all” SEA is installed

into one PMU to capture both static and dynamic features and peculiarities

in power systems, the measurements are very hard to meet the standard

requirements when facing different operating states [44,45]. To meet the

growing demand for high-speed, low-latency, and yet absolutely accurate
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measurements, a more efficient mechanism which adaptively, and in an

automated manner, selects the right SEA at the right time is desired.

In all, to address various multi-dimensional challenges in the power grid,

solutions that can help in detecting and monitoring variant types of events

or unfolding threats in or near real-time, meanwhile, enhance situational

awareness, are of significant importance and in urgent demand.

1.4 Research Objectives

This dissertation focuses on developing a next-generation smart sensor

solution in power grids that enables (1) a paradigm shift from sensing-only

to sensing-and-actuating mechanisms—i.e., distributed intelligence—that

can achieve online event detection and classification, and (2) high-fidelity

measurements in power grids under various prevailing conditions at nearly

all time. The latter is achieved through an SEA selection scheme embed-

ded within the smart sensor that adaptively selects the most promising

algorithms installed within the smart sensor.

The proposed smart sensor solution aims to shift the centralized sensing

and monitoring paradigm into a distributed system using an edge computing

technology, in which

• Each PMU pre-processes the synchrophasor data, gathers the infor-

mation at the location where power waveforms are obtained and then

reports the detected event to the distant and local control centers.

• Electrical waveforms are directly processed using the computing ca-

pability at the point where the waveforms is captured; the raw PMU

input signals, e.g., currents and/or voltage, are sampled in real time

and contain very important information on the events in the grid. In
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such a way, the real time processing requirement of the data could be

ensured and the communication burden as well as the risk of potential

cyber intrusions can be reduced.

• As the PMU’s local computing capability is fully utilized and/or cost-

effectively improved, the performance of the entire PMU WAMS can be

strengthened.

• The measurement performance of the PMU sensor would be improved

as the event type could be detected in real-time and, accordingly,

a proper SEA is selected in an automated manner for high-fidelity

measurements.

The main contributions of this dissertation is to design, develop, and

test the next-generation smart sensors in power grids enabling distributed

intelligence [46–52]. Such an edge computing approach could transform

the way that PMU data is being handled, processed, and delivered across

the grid. This type of smart sensor technology will be embedded with the

following analytical modules:

• A pseudo-continuous quadrature wavelet transform (PCQ-WT) will be

developed to process the single and/or three-phase (voltage and cur-

rent) waveforms and effectively performs an online pattern recognition

and feature extraction.

• Built on the PCQ-WT-extracted features, a machine learning mech-

anism, i.e., the convolutional neural network (CNN), is developed to

detect and classify different events based on the scalograms obtained

from PMU’s input waveforms in real-time.

• Founded on the Quadrature Delayed Signal Cancellation (QDSC) and
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Gaussian Weighted Taylor series (GWT) principles, two fast and ac-

curate SEAs, that meet the majority of IEEE standard requirements

respectively for the Protection (P)-class and Measurement (M)-class

applications, will be developed.

• An efficient SEA selection scheme is developed to be housed within

the smart sensor that adaptively selects the most promising SEA algo-

rithm which best suites the detected event and ensures high-fidelity

measurements at all times.

Additionally, two fast and accurate SEAs are proposed, that meet the IEEE

standard requirements respectively for the P-class and M-class applications

and can be implemented for improving the synchrophasor measurements

under various conditions. In this dissertation research, the performance of

the proposed distributed intelligence framework is tested and verified on

several event detection applications in power grids.

1.5 Dissertation Outline

The remainder of this dissertation is organized as follows:

• Chapter 2 reviews the existing literature on power grid resilience, as

well as the event detection and monitoring services for online situa-

tional awareness. These approaches are classified and reviewed in

two categories of (i) with assistance of PMU sensors and (ii) with con-

ventional measurements. Meanwhile, the synchrophasor estimation

algorithms through time domain and frequency domain approaches

are reviewed.

• Chapter 3, first introduces an overview of the proposed smart sensor

technology and its configuration. Then, a background on the wavelet
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transforms and the CNN machine learning mechanism is given. The

proposed analytical advancements that are embedded within the smart

sensor technology are elaborated next, which include (i) the suggested

PCQ-WT signal processing algorithm for online pattern recognition and

feature extraction on electrical waveforms; (ii) proposed CNN machine

learning algorithm for real-time event detection and classification in

power grids; (iii) the developed adaptive SEA selection scheme and the

proposed estimation algorithms for high-fidelity synchrophasor mea-

surements. The performance of each module is extensively analyzed

and numerically investigated under variant conditions.

• Chapter 4 presents the existing High Impedance Fault (HIF) event

modeling techniques, and accordingly, the proposed HIF event detection

schemes are introduced. Detailed information on the proposed HIF

model and a modified detection engine based on the proposed smart

sensor solution for HIF detection are presented next. At last, case

studies and numerical results are conducted and the performance of

the suggested HIF detection technology is analyzed and validated.

• Chapter 5 introduces the modeling of Geomagnetically Induced Current

(GIC) and its impacts on the power grid. Then, a GIC event detection

scheme, which is based on a modified smart sensor event detection

engine and a hybrid feature extraction tool by using WT and Short

Time Fourier Transform (STFT), is proposed. The performance of this

hybrid GIC detection mechanism is tested and verified under various

grid operation conditions.

• Chapter 6 presents an innovative approach of using one single smart

sensor solution to detect, identify, and differentiate the power grid
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topology changes that might happen due to faults or manual operator

interventions. Numerical case studies are performed to verify this

proposed solution and experiments show that the suggested sensor

technology can provide promising outcome in detecting the network

topology changes under different triggering conditions.

• Chapter 7 summarizes this dissertation research and highlights the

the contributions of this research work. Recommendations for the

future work on the use and applications of the proposed smart sen-

sor technology are also provided. At last, publications during this

dissertation effort are listed,

11



Chapter 2: LITERATURE SURVEY

2.1 Electric Power Grid Resilience

Well-known reliability principles have been widely adopted in practice to

have the power grid operate securely and reliably under normal conditions

and safely withstand credible contingencies (e.g., N-1 criterion). Neverthe-

less, traditional reliability metrics do not focus on the High Impact Low

Probability (HILP) incidents in the power grid [8]. While not-frequently experi-

enced, one single HILP event can cause widespread power outages that affect

a large number of customers, or even result in a total blackout [53–56]. Once

the electricity outages occur, billions of dollars economic loss can be caused

and human lives can be threatened or even lost. Therefore, enhancing the

resilience of the electric power grid is of critical importance. Consequently,

less frequent major outages would be ensured and the negative impacts on

our society are reduced. On the other side, the concept of Resilience to a

wide variety of HILP events has been quite discussed in the literature in

recent years and solutions have been proposed [5,46–48,55–68]. However,

its definition is unclear and not standardized so far. Meanwhile, the concept,

definitions, and quantification measures of the “power grid resilience” has

remained less clarified and unfocused. The word “resilience” is derived from

the Latin word "resilire" highlighting “the ability to rebound” [69] and can

be defined from many different perspectives.

For instance, the National Infrastructure Advisory Council (NIAC) pro-

posed a universal definition of infrastructure resilience in 2010: “the ability

to reduce the magnitude and/or duration of disruptive events. The effective-

ness of a resilient infrastructure depends on its ability to anticipate, absorb,
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adopt to and/or rapidly recover from a potentially disruptive event.” [70].

In the context of the power grid, the Electric Power Research Institute

(EPRI) [71] describes the resiliency including the ability to harden the sys-

tem against—and quickly recover from HILP events such as extreme weather

events—hurricanes, earthquakes and tsunamis. National Academies of

Sciences, Engineering, and Medicine provided a similar and more specific

definition of power grid resilience as follows:" Resilience is not just about

lessening the likelihood that these outages will occur; it is also about limiting

the scope and impact of outages when they do occur, restoring power rapidly

afterwards, and learning from these experiences to better deal with events in

the future." [72].

A typical power system performance evaluation framework following a

disturbance is illustrated in Figure 2.1, where the vertical axis represents the

power grid performance over a period of time captured in the horizontal axis.

A transitional power system operation (red dash line) with resilience-assured

performance should possess the following features and principles [46,73,74]

Figure 2.1: General representation of power system resilience to an extreme
event over time
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1. Normal Operation Stage: Between the starting point t0 and the point

when a disturbance occurs at t1, advanced forecasting systems and

decision-making strategies are deployed to anticipate and effectively

deal with the upcoming disruption (e.g., an approaching hurricane).

Meanwhile, at this stage, power system always operates in the de-

sired and optimal state facilitated by timely maintenance and asset

management of the grid and its components [75–83].

2. Surviving Stage: As the system is equipped with adequate survivability,

the initial impacts of the disruptive event is a a degradation of the

system performance to some extent starting from t1, until it reaches to

a minimum at t2.

3. Reparation Stage: With the help of robust and resistant configurations,

settings, and technologies as well as the available emergency man-

agement resources, the preparation and recovery process begins at t2,

at which the collapsed infrastructures start restoring, and damaged

equipment and devices get repaired and replaced [84–89]. Segments

with outages are ready to be re-energized in the next stage at t3.

4. Recovery Stage: Following the previous stage, the impacts of the dis-

ruptive event are mitigated and the system performance elevates at t3

until it reaches its full functionality at t4.

This dissertation focuses on enhancing the resilience of the power grid

by providing fast event detection and classification functions, which can ac-

curately and timely assist the power grid to better resist the disturbances by

taking corresponding hardening and adaptive responsive strategies before or

quickly following their occurrence. As a result, with the enhanced resilience

in the power grid (blue line), the performance degradation is reduced and
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the preparation, as well as the recovery process can take place earlier than

the traditional settings.

2.2 Event Detection in Power Grids

2.2.1 Event Detection without Synchrophasor Measurements

Event detection has been one of the long-lasting research topics among

researchers as it is one of the extremely crucial elements for reliable on-

line surveillance and secure operation of the power system. Before the

widely-installed PMU networks appear, many research and methods have

been proposed for enhancing the situational awareness in power grids. The

authors in [90] proposed a power quality disturbance feature extraction

approach. This approach calculates and analyzes offline using synthetic

waveforms/signals and is subsequently validated using field measurements.

This research proves that the feature extraction step is necessary to clas-

sify disturbances effectively and with low computational effort. In [91], a

method for detection and classification of power disturbances using a sparse

signal decomposition approach on over-complete hybrid dictionary matrix

is presented. This method first decomposes the power signal into detail

and approximation signals that contain impulse and sinusoidal elemen-

tary waveforms. The detail signal captures transient features (impulsive

and oscillatory) and waveform distortions (harmonics and notching); mean-

while, the approximation signal contains fundamental power features of

short- and long-duration variations (e.g., sags, swells, and interruptions).

Finally, a hierarchical decision-tree algorithm is used for classification of

disturbances. In [92], an intelligent protection scheme for microgrids using

combined wavelet transform and decision tree is introduced. This scheme
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retrieves current signals at the relaying point and uses wavelet transform to

derive effective features such as the change in energy, entropy, and standard

deviation through wavelet coefficients. The decision tree is developed for the

fault classification task by processing the wavelet based features derived

from sequence components and the features derived from the current sig-

nals. Using the extracted features based on tunable-Q wavelet transform,

Reference [93] proposed an automated recognition approach through a dual

multi-class support vector machine (SVM) for detection of power quality

disturbances. The wavelet is tuned for decomposition of signal into funda-

mental and harmonic components, where the presence of low-frequency

inter-harmonics is also analysed. Then, the power quality disturbances are

categorized into two groups, and for each group, disturbances are recog-

nized by employing a dual multi-class SVM. To mitigate the adverse effects

of power swing on the conventional distance relays and avoid relays’ mal-

operations (mistaken relay tripping), authors in [94] presented a frequency

domain approach which can distinguish faults and the power swing phe-

nomena; a wavelet-neuro-fuzzy combined approach is also proposed for

fault location applications. The wavelet transform captures the dynamic

characteristics of the fault signals, where a fuzzy inference system and the

adaptive-neuro-fuzzy inference system are both used to extract important

features and thereby to provide detection and classification for a consequent

fault location. A conceptual framework for power grid multi-event detection

and unmixing is presented in [95], where events are treated as mixtures

of more than one constituent root event. This framework aims to analyze

events that go beyond what are immediately detectable in a system and

provides high-resolution data for an improved situational awareness. In this

framework, the event formation process is considered as a linear mixing;
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also a non-negative sparse event unmixing algorithm for multiple event

separation and temporal localization using data collected from frequency

monitoring network is proposed.

2.2.2 Event Detection with Synchrophasor Measurements

With the synchrophasor measurements available from PMUs installed

in electric substation across the power grid, the situational awareness and

the resiliency of the grid can be further enhanced. Many research has

been done on power system real-time event detection using synchrophasor

measurements, which improves the operators’ ability to predict, prevent and

mitigate the undesired impacts on the power grid and to timely avoid cascad-

ing outages. Utilizing the information extracted from the PMU datasets, [96]

introduced a backup protection technique for wide area power transmission

grid. This protection scheme compares positive sequence voltage magni-

tudes at each bus during fault conditions and locates the nearest bus to

the fault. Then, the differences in the positive sequence current angles

are used to detect the faulted line. [97] proposed a PMU based protection

scheme for transposed and un-transposed parallel transmission lines. This

scheme is based on the distributed line model and the synchronized phasor

measurements at both ends of the transmission lines. By using eigen-

value/eigenvector theory to decouple the mutual coupling effects between

parallel lines, the fault detection and location indices are derived for the pro-

tection applications. In [98,99], different line outage detection techniques

using phasor measurements from PMUs are presented. Reference [98] devel-

oped an algorithm which uses known system topology information, together

with PMU phasor angle measurements, to detect system line outages. Addi-

tionally, an estimation method for the pre-outage flow on the outage line is
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proposed. In [99], a combination of pre-outage topology information and

real-time phase angle measurements from PMUs is used for double line

outage detection. A real-time event detection method and data archival

reduction based on synchrophasor measurements from PMUs are proposed

in [100] to identify the voltage magnitude events and real power events for

a small-scale microgrid application. This method is based on principal

component analysis (PCA) and a second order difference method with a hier-

archical framework. [101] presented a data-driven algorithm based on local

outlier factor to detect and locate events in power systems using reduced

PMU data. In [101], the unequal-interval reduction method is presented to

reduce the scale of PMU data. Then, a PCA-based similarity search method

is applied to compare the differences of the operation state between any

two buses. At last, local outlier factor is used to detect the abnormal events

in power systems and to determine the region where the event is originally

triggered from.

Synchrophasor measurements from PMUs can also be used for power

grid fault detection: [102] employs PMU measurements recorded during

the fault for determination of the fault currents flowing on the faulted line

and locating the fault through a weighted least squares estimator. This

method reduces the required number of measurements for the solution of

the fault location problem by making use of the fast refresh rates of the

PMUs. [97] developed an algorithm to identify high impedance fault using

statistical analysis of the utility PMU measurements at substations. Fault

thresholds used in rules are determined based on theoretical values and

real-world recorded PMU data during fault events. A rule-based data-driven

approach to detect fault location and perform fault classification is proposed

in [103]; this approach relies on rules created using PMU measurement
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data without the knowledge on the power system’s topology and its physical

characteristics. Synchrophasor data from PMUs can also be used to cluster

the most coherent generating units [11] and then applied for detecting and

predicting the critical generating units in the grid [104].

2.3 Synchrophasor Estimation Algorithms (SEAs)

There are many different types of algorithms for phasor measurements.

Typically, the existing phasor estimation methods can be mainly categorized

into time-domain and frequency-domain methods.

2.3.1 Time Domain SEAs

Reference [105] proposed a hybrid adaptive filter based on a modified

Gauss-Newton adaptive linear element to estimate the fundamental and

harmonic phasors along with the frequency change of non-stationary power

system signals. An objective function based on the weighted square error

is minimized where the computational load and time are reduced.In [106],

an estimator based on the combination of harmonic components is intro-

duced to provide accurate phasor as well as harmonic measurements in

off-nominal power frequency conditions.The authors in [107] estimate the

phasor under the grid dynamic conditions using a Double Suboptimal-

scaling-factor Strong Tracking Kalman Filter (DSTKF)-based algorithm and

a linearized complex exponential of the signal using a Kth Taylor polyno-

mial.An approach for estimation of alternating current signal fundamental

phasor under dynamic conditions is introduced in [108]. A model-order

estimation method is used to separate the signal space and the noise space

in the signal correlation matrix. Then, the Vandermonde matrix obtained

from the signal parameters’ total least square estimation through rotational
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invariance techniques is extended to second-order Taylor’s series approx-

imation and used to estimate the dynamic phasor of the current signal.

Reference [109] proposed a dynamic phasor estimation method for protec-

tive relays, which captures the fundamental frequency component with

time-variant amplitude. The fault current is treated as a combination of

a decaying dc offset, a decaying fundamental frequency component and

harmonics with constant amplitudes. Least square technique is used to

estimate the magnitudes and the time constants of each decaying compo-

nent. Authors in [32] proposed adaptive cascaded filter algorithms for both

P- and M-class PMUs.

2.3.2 Frequency Domain SEAs

The frequency-domain methods have been widely used, which are com-

monly featured with the calculation simplicity and stable performance.

The frequency approaches develop filters centered at the fundamental fre-

quency to extract the phasor of interest. For example, [110] uses a classic

Kalman filter on Taylor series polynomial to form flat magnitude and phase

responses. This approach provides phasor estimates without magnitude

or phase distortion.Reference [111] presented a dynamic phasor estima-

tion approach through a second-order Taylor polynomial. This estimation

approach approximates the phasor by a state vector, which contains the

estimate of the dynamic phasor and the estimates of its derivatives as

well. The authors in [112] proposed a phasor measurement solution by a

weighted least squares of Taylor approximation. This approach provides

a filter with frequency response around the fundamental frequency and

low sidelobe level over the stopband. Also, a linear phase response is ob-

tained, and their estimates are free of amplitude and phase distortion.The
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phasor parameter estimates in [113] are achieved through the Taylor-based

weighted least-squares (TWLS) approach. This presented phasor estimator

and its derivatives are expressed as weighted sums of the discrete-time

Fourier transform (DTFT) of the analyzed waveform and its derivatives. The

phasor estimation approach from [114] consists of the interpolated discrete

Fourier transform (DFT) and the Taylor-Fourier transform. The authors

further reduced the computational complexity and improved the efficiency

of this combined approach; moreover, a promising accuracy in the main

testing conditions is ensured.In [33], an enhanced Interpolated DFT for

synchrophasor estimation in FPGAs is proposed and validated.A symmetric

TWLS (STWLS) filter to iteratively estimate the parameters of the positive

image of the fundamental component is also proposed in [115].In [116],

an instantaneous oscillating phasor estimation algorithm using TaylorK-

Kalman filters is proposed, where a state-transition matrix with a sinusoidal

signal model obtained by Taylor polynomial is used to capture the ampli-

tude and phase fluctuations between one signal sample and the next with

the Kalman procedure. This method allows the Kalman filter to estimate

both phasor and its derivatives. Reference [117] proposed a compressive

sensing Taylor-Fourier multi-frequency joint approach for synchrophasor

measurements. In this approach, the most relevant components of the

signal are identified and the impacts of dynamic conditions, harmonic and

inter-harmonic interferences are suppressed.
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Chapter 3: Proposed Smart Sensor Technology

3.1 Abstract

An innovative smart sensor technology with distributed event detection

functionality and adaptive SEA selection mechanism for online surveillance

is presented in this chapter. In the proposed smart sensor technology, the

waveform patterns and signatures are extracted via a time-frequency do-

main analytic—wavelet transform (WT) [48,51]. Built on the WT-extracted

features, i,e. scalograms, a machine learning mechanism based on convolu-

tional neural networks (CNNs) [49,118] is employed to detect and classify the

events through a pattern recognition process. This proposed solution could

eliminate the potential risks to communication failures, delays/latencies,

and cyber-attacks, system monitoring and control paradigms should enable

fusing the online measurements in a distributed manner; that is building

in distributed intelligence and translating the data to valuable information

closer to where the data is generated (i.e., in substations).

3.2 Big picture of the Proposed Sensor Technology

Voltage and current waveforms in power grids reveal a certain pattern

with unique features and peculiarities driven by the system operating con-

ditions. For instance, waveform magnitudes and angles can go through

step changes during faults; measurements can be noisy; unbalanced load,

voltage surge or sag, harmonics, and frequency drift are also common phe-

nomena. The event classification problem in power grids could be then

decomposed into two steps. First, the signatures and dominant patterns
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from the electrical waveforms, which convey valuable information on the

underlying events, are extracted. Second, a classifier is employed for event

detection and classification based on the extracted features. Motivated

by these concepts, the proposed smart sensor is developed. Figure 3.1

illustrates the algorithmic process proposed to be embedded within the

smart sensors, which is achieved through the following four steps: (i) Sig-

nal Acquisition; (ii) Feature Extraction; (iii) Event Detection; and (iv) SEA

Selection.

GPU

Signal  Acquisi t i on

- Obtain Waveforms from A2D Module.
- Cache All  Three-phase Waveforms.
- Apply Clarke Transformation.

Featur e Ex t r act i on
- Apply PCQ-WT to All  Waveforms.
- Store Scalograms in Feature Matr ix.
- Conver t the Matr ix to 4-channel Image.

Event  Detect i on

- Feed the 4-channel Image into CNN.
- Classi fy the Type of the Event.
- Get Confidence Level

Confidence Level 
Above Threshold?

SEA Select i on

- Enable SEA Output Selection 
- Repor t Event.

- Select Normal Condition SEA.

Phasor  & 
Classi f ied Event

NoYes

Event & Confidence

Scalogram: A B C

Figure 3.1: Big picture of the algorithmic process within a smart sensor.

The proposed technology shares exact same input signals (voltage and
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current) as the existing PMUs in power grids, with no additional device nor

investment for data acquisition. First, the sampled three-phase waveforms

captured by the Analog to Digital (A2D) converter within the proposed sensor

are loaded into the buffer. Second, the original and the Clarke-transformed

waveforms are individually processed and features (scalograms) are extracted

using the proposed PCQ-WT signal processing algorithm. To accelerate the

consequent event classification, the scalograms are converted into images.

The event classification in the Third step is, therefore, recast as an image

classification process, where the scalograms are fed into several parallel

CNN machine learning modules embedded within the Graphical Processing

Unit (GPU) for event detection and classification. Since the processing time

must be sufficiently low for online applications, a simple CNN architecture is

proposed that also meets a designated accuracy requirement under a wide

range of fast- and slow-dynamic events in power grids. The machine learning

mechanism will finally detect and classify the event, attributed with a

confidence level. Under certain circumstances, the patterns/features in the

scalograms could be extremely similar for different types of events, and the

predicted event (with the highest confidence level) could interchange between

several types in a short period of time. Hence, a threshold criterion for the

output confidences is established to make a solid decision on event detection

and classification. Following the detected event (with the confidence level

above a threshold), an adaptive SEA selection mechanism is devised in the

fourth step that will adopt the most promising SEA outputs among a suite

of embedded SEAs (high-speed and high-accuracy algorithms) for online

measurements. If the confidence level is reported lower than the designated

threshold, the system is concluded to be in its normal operating condition

and the default SEA output will be used for accurate measurements.
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Figure 3.2: Architectural design of the proposed smart sensor technology.

The overall hardware architecture of the proposed smart sensor tech-

nology is illustrated in Fig. 3.2. One GPU is the only additional hardware

required in the proposed system configuration compared to the conventional

PMUs, where the GPU shares the same inputs of the phasor processor. All

core operations described in Fig. 3.1—which are in fact the high-speed

matrix operations—are performed in the GPU. This minimal hardware mod-

ification makes it viable for the proposed functionalities to be deployed in

stand-alone smart sensor units or embedded within the existing PMUs.

3.3 Technical Background

3.3.1 Electrical Waveforms

The three-phase time-domain sinusoidal waveforms fed into the PMUs

can be mathematically represented as follows:

xph(t) = Aph(t)cos
(
2πFh(t)+φph(t)

)
, (3.1)
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where xph(t) is a one-dimension (1-D) waveform measured at each phase;

Aph(t), Fh(t), and φph(t) are the instantaneous magnitude, fundamental fre-

quency, and phase angle in each phase, respectively. The waveform in each

phase can be expressed by a summation of different orders of harmonic

components, as presented in (3.2):

xph(t) =
H

∑
h=1

Aph,h(t)cos
(
2πFh(t)+φph,h(t)

)
, (3.2)

where h is the order of harmonics, and H is the maximum order of harmonic

of interest. In different grid operating conditions, different values of Aph,h(t),

Fh(t), φph,h(t) will appear in the three-phase power signal, resulting in dif-

ferent patterns and peculiarities. To simplify the time-domain sinusoidal

signal analysis and relaxing the need to acquire the rotating reference frame

in the Park transformation [119], Clarke transformation is applied to convert

the three-phase signal from ABC- to αβ -frame, as presented in the following:

xαβ (t) = xα(t)+ jxβ (t), (3.3)

xα(t)

xβ (t)

=

2
3 −1

3 −1
3

0
√

3
3 −

√
3

3




xA(t)

xB(t)

xC(t)

 (3.4)

3.3.2 CWT and Pseudo-CWT

Since power waveforms contain various frequency components, multi-

resolution waveform analytics are suitable to extract the signal signatures

and dominant features, i.e., amplitude, frequency, and phase angle. The

most commonly-used technique is the short-time Fourier transform (STFT)

[110, 120] and the wavelet analysis [48, 121]. Studies show that STFT
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is attributed a higher computational burden and time, which leads to a

lower time resolution than the wavelet analysis in time-frequency domain

[122, 123]. Meanwhile, when comparing the STFT spectrogram in Fig.

3.3(a)(b) and the scalogram of the continuous wavelet transform (CWT) in

Fig. 3.3(c)(d)(e) and (f), one can notice that even though STFT provides higher

frequency accuracy, CWT offers more conspicuous performance for feature

extraction. Furthermore, the event detection module would benefit from

the waveform features rather than an accurate frequency measurement.

In this dissertation, therefore, wavelet analysis is selected as the main

mathematical tool for online feature extraction and waveform monitoring.

The wavelet transformation is achieved via the cross-correlation between

the signal of interest x(t) and designated wavelets, as follows:

X(ω|a,b) = 1√
|a|

∫
∞

−∞

x(t)Ψ*(
t−b

a
)dt (3.5)

where Ψ(t) is a mother wavelet; * denotes the complex conjugate; a and

b are scaling factors and time shift, respectively; and Ψ( t−b
a ) is one of the

“daughter wavelets” of Ψ(t) [124,125]. With different selections of a and b,

a wavelet bank is then determined. By selecting proper intervals for the

continuous scaling factor along with the time shift, a CWT is achieved [126].

In a smart sensor, the real-time signals are sampled and discrete signal

processing is applied. The continuous-time to discrete-time (C2D) conver-

sion will, however, sabotage the continuity of the signal. Mathematically,

the daughter wavelets’ length, so called the “wavelet window size”, is limited

and the scaling factor is finite due to the processing capacity limitations of

the computing hardware. For all these reasons, the actual behavior of the

conventional CWT within the processor is discrete WT with a set of discrete
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Figure 3.3: Comparison of the STFT vs. Morlet CWT & DB4 CWT on
quadrature signals during: (a),(c),(e) -2Hz frequency jump; (b),(d),(f) 40◦
phase jump.

scaling factors ai, wherein, i is an integer. In the proposed Pseudo-CWT, i is

chosen from a set of linearly-increasing real numbers instead of integers.

Similar to the discrete WT, the PCWT with one discrete scaling factor is

defined as follows:

X [ω|ak,bk] =
1√
|ak|

W−1

∑
n=0

x[n]Ψ∗[
nTs−bk

ak
] (3.6)
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where, Ts denotes the sampling interval, and W stands for the window

(buffer) length. In a CWT, each daughter wavelet needs to cover a designated

frequency range that reflects the features in time-frequency domain. The

central frequency of the daughter wavelets can be approximated by the

following relationship with the scaling factor:

f = Fc/ak (3.7)

where, Fc is the central frequency of the mother wavelet [127]. When a

vector of scaling factors with length K is chosen, the wavelet bank Ψ and the

extracted features at time instant n are expressed by the following equation:

ΨK×W=
[

Ψ[nTs−b1
a1

], · · · ,Ψ[nTs−bk
ak

], · · · ,Ψ[nTs−bK
aK

]

]T

,

XK×1
ω [n]=

[
Xω1(a1,b1), · · ·,Xωk(ak,bk), · · ·,XωK(aK ,bK)

]T

.

(3.8)

Where, T is the conventional transpose. To cover a sufficiently wide range

of frequency and provide adequate pattern information for time-frequency

analysis in any given operating condition, the central frequency of mother

wavelets Fc and the largest scaling factor aK must satisfy the following

condition:
Fc

aK
< f0 < Fc, (3.9)

where, f0 is the frequency of the signal of interest. Fc needs to be chosen from

a higher frequency range than the maximum frequency of interest and scaled

down by ak. Hence, as ak increases, the corresponding frequency of the

PCWT output decreases in the frequency domain. Once the scaling factors

are chosen, then (3.8) is able to generate the wavelet bank and a series time

bin of XK×1
ω along the time instants, i.e. the PCWT scalograms are achieved.
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During the feature extraction process, both transforms require a window

(buffer) of samples and, thus, a latency effect indeed exists. Selection of

a proper window size could minimize the latency effect, but at the cost of

trading off the frequency resolution.

3.3.3 Convolutional Neural Networks (CNNs)

At this stage, we consider the obtained scalograms as 2-D images, and

the event classification problem turns into a supervised image classification

process. The conventional paradigm for image classification is to manually

design the feature extractor and then reduce the dimensionality of the

data, where the second phase is to employ a classifier to classify the lower

dimensional features. This paradigm highly depends on the efficient design

of the feature extractor; manually designing features for a complex task

requires a great deal of human time and effort; it can take decades for an

entire community of researchers [128]. In contrast, Convolutional Neural

Networks (CNNs) are able to learn the extracted features automatically

and have been proven very successful in the broad range of image-related

tasks [129–131]. By definition, CNNs are simply neural networks that use

convolution in place of general matrix multiplication in that least one of

their layers [128]. In general, the implementation of the convolution is

through cross-correlations as defined by

sp(m,n) = ∑
u

∑
v

∑
w

Iu(m+ v,n+w)K p(v,w), (3.10)

where sp(m,n) is the output of the convolutional layer at position (m,n) and

p–th channel; Iu is the u–th channel of the image/data volume, and K p is

the p–th convolutional kernel. A complex convolutional layer is composed

30



of a small number of simple layers [128] expressed by the following:

Il = pool (σ(s)) , (3.11)

where, Il represents the output volume of the l–th layer, σ(·) is the non-

linearity of the neurons, and pool(·) is a down sampling procedure. By

stacking the convolutional layers, the abstraction capacity of the network

generally increases [132].

The representations of the last convolutional layer are expanded to vectors

and processed by the general fully-connected layers; this transform the

representations with more nonlinearities into spaces with different (higher

or lower) dimensions. The final layer of a CNN reduces the dimensionality of

the representations to the number of classes; cross-entropy is then employed

to measure the “goodness” of the classification (Kullback-Leibler divergence

between the predicted distribution and the target distribution) [133]. Finally,

gradients of the cross-entropy loss function with respect to the parameters

would help train the CNN by back-propagation.

3.4 Proposed Analytics within the Smart Sensor

3.4.1 The Proposed PCQ-WT for Online Feature Extraction

To identify an event in each phase, the corresponding features need to be

observed over time. As the positive-sequence frequency and phase angles

are of interest for both xαβ (t) and xph(t) during synchrophasor measurements,

we propose a quadrature PCWT to extract the waveform features and signal

signatures. Meanwhile, the waveform captured in each phase is real, and

the 1-D waveform (3.2) can be expanded by the Euler’s formula to adopt
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the quadrature wavelet transform:

xph(t) =
1
2

H

∑
h=1

Aph,h(t)e jφph,h(t) · e j2πFh(t)

+
1
2

H

∑
h=1

Aph,h(t)e− jφph,h(t) · e− j2πFh(t).

(3.12)

The next step is to select an appropriate wavelet and investigate its feasibility

for waveform feature extraction. Gabor wavelets have been widely used in

two-dimension (2-D) pattern recognition [134–136]. In order to simplify the

design and enhance the computational efficiency, a modified complex Gabor

wavelet is adopted in this research work as written below

Ψ(t) = exp( jωc(t−b))︸ ︷︷ ︸
Periodic

Component

·exp
(
−(t−b)2

α2
0

)
︸ ︷︷ ︸

Gaussian

Envelope

, (3.13)

where, wc is the central frequency. The Fourier transform of this Gabor

wavelet is

FΨ(ω) = α0
√

π · exp(− jωb) · exp(−α2
0

4
(ω−ωc)

2). (3.14)

One can see that the Fourier transform of the Gabor wavelet is also a

function on the theme of the Gabor wavelet, although the Gabor wavelet

transforms do not follow the orthogonal property since

|FΨ(ωc± ε)| 6= 0, (3.15)

where, ε is a small value. According to (3.14), this Gabor wavelet possesses

a characteristic of predictable narrow bandwidth. By properly selecting

α0, one of the Gabor WT can cover a desired range of frequencies and the

time shift b plays no magnitude impact on (3.14) and (3.15). To ease the
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derivation, let b = 0; then the CWT using the Gabor wavelet for a unit-length

phasor with frequency ω0 > 0 turns into

X+(ω0|a,b = 0) =
∫

∞

−∞

x(t)Ψ*(
t
a
)dt

=
∫

∞

−∞

exp
(

j(ωo−
ωc

a
)t− t2

a2α2
0

)
dt.

(3.16)

According to the Hubbard–Stratonovich transformation [137],

exp(−α

2
x2) =

√
1

2πα

∫
∞

−∞

exp
(
− y2

2α
− jxy

)
dy, (3.17)

the CWT using the Gabor wavelet in (3.16) becomes

X+(ω0|a,b = 0) = aα0
√

πexp
(
−α2

0
4
(aω0−ωc)

2
)
. (3.18)

It can be seen that when ω0 = ωc/a, (3.18) reaches its maximum and the

dominant feature of the expected frequency is revealed. In order to make

each frequency of interest share an equivalent maximal magnitude, we make

α0 = ωc/(γa), (3.19)

where, γ is a constant. Hence, in (3.13), the Gaussian envelope in the

Gabor wavelet is adaptive to different frequencies. While applied to the

1-D waveform, the feature corresponding to a unit phasor with negative

frequency (−ω0) is always suppressed, because the CWT of the negative

frequency in (3.20) decreases as ω0 increases.

X−(-ω0|a,b = 0) = aα0
√

πexp
(
−α2

0
4
(aω0 +ωc)

2
)
. (3.20)

The discrete form of the Gabor wavelet that is used in a smart sensor is
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presented as

Ψ[n|ak,bk] = exp
(

j ωcTs(n−bk)
ak

)
exp
(
−T 2

s (n−bk)
2

a2
kα2

0

)
. (3.21)

When applying the complex Gabor wavelet with a set of discrete scaling

factors, the proposed PCQ-WT is achieved as follows:

X(ωk|ak,bk = 0) =
W−1

∑
n=0

x[n]Ψ*
[
−Tsn

ak

]
=

W−1

∑
n=0

x[n]exp
(
− j

ωc

ak
Tsn−

T 2
s n2

a2
kα2

0

)
.

(3.22)

If one determines the frequencies of interest and designs the Gabor wavelet

bank properly, a vector Xω consisting a set of PCQ-WTs is achieved, and

the PCQ-WT is able to extract the waveform signatures in frequencies of

interest via time-frequency analysis, i.e., scalograms are generated.

3.4.2 The Proposed CNN for Event Detection & Classification

Pursuing development of an online event detection and classification

mechanism, and built on the PCQ-WT extracted features corresponding

to various types of events, a machine learning algorithm, i.e., the CNN, is

designed. As discussed earlier, the process of event detection is converted to

a supervised classification process on the scalograms. However, the classifi-

cation on the 2-D scalograms is challenging due to the high dimensionality.

Specifically, every frame of the obtained scalogram has scales× time bins

dimension (usually hundreds by hundreds); such high-dimensional data

is prohibitive in most conventional pattern classification approaches. We

treat the PCQ-WT scalograms as 2-D images and propose a CNN-based

architecture to classify the events concealed in the scalograms (images).
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As the scalogram classification is not with very high abstraction level, the

proposed CNN has a simple architecture that meets the requirements of a

synchrophasor, yet with very fast test speed. Our proposed CNN contains

five layers: three convolutional (Conv.) layers and two fully-connected (FC)

layers. This framework can be either a standalone tool for event detection

and classification or can be functionally embedded within PMUs to assist

the phasor processor in selecting a proper SEA in real-time.

3.4.3 The Proposed Mechanism for Adaptive Phasor Estimation

The event detection and classification module introduced in Section 3.4.2

provides valuable information on the grid operating conditions. We aim to

demonstrate that the one-size-fits-all algorithm within the existing PMUs

may neither be sufficient nor accurate in effectively dealing with all types of

signals corresponding to different events and operating conditions in power

grids. There are several solutions that can be thought in response to this

challenge: (i) one very costly solution would be to install several different

sensors (each with one different SEA) in each substation for different end-

use applications that use the measurements; (ii) the other approach can

be to design one very accurate SEA that can work very effectively under all

system operating conditions meeting all measurement accuracy and speed

requirements, which is extremely hard to achieve considering the hardware

limitations as well as the ever-existing trade-off between the speed-accuracy

performance requirements for different applications; (iii) one promising

and viable approach in line with today’s and tomorrow’s infrastructure

and computing technologies—which we focus on within the proposed smart

sensor—, is to host a suite of SEAs that work in parallel within the sensor and

are selectively and adaptively activated in an automated manner depending
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on the unfolded system operating condition.

The detailed architecture of the proposed SEA selection module is shown

in Fig. 3.4. For every detected event and identified operating condition,

the best-fit measurements—phasor, frequency and ROCOF—are selected

in real-time; therefore, the output selector should be equipped with an

optimized strategy that dynamically switches between one or multiple SEAs.

Among SEAs within the smart sensor, we propose two novel SEAs, one P-

Class with promising estimation speed and one M-Class with high-accuracy

measurements.

Figure 3.4: Architecture diagram of the developed SEA selection module.

3.4.4 The Proposed P-Class and M-Class SEAs

The overall architecture for the proposed P-Class and M-Class SEAs

within a smart sensor is presented in Fig. 3.5. The sampled waveform

is sent into the Quadrature Delay Signal Cancellation (QDSC) module to

estimate the P-Class phasor magnitude (Ap). A functionally-programmed
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Figure 3.5: The proposed P-Class and M-Class SEAs within a smart sensor.

digital quadrature oscillator is used to assess the P-Class phase angle (Φp)

and frequency (Fp) through eliminating the phase difference (∆Φ) between the

fundamental waveform and the quadrature oscillator. At last, the ROCOFp

is estimated through the derivative of the measured frequency Fp. The M-

Class phasor magnitude (Am), phase angle (Φm), frequency (Fm), and ROCOFm

are estimated from the Gaussian-Weighted Least Square Taylor Series SEA.

Here, we abbreviate the proposed M-Class SEA as “GWT-M”; meanwhile, the

GWT-M provides the deviation of the waveform’s nominal period (∆T ) to the

QDSC module. This, in turn, makes the proposed P-Class measurement

adaptive to designated operating conditions. In our proposed framework,

the timing synchronization is employed to drive the digital oscillator and

to ensure an accurate measurement. The nominal fundamental frequency

(FN) and the period (TN) is determined by the system frequency, i.e., 50Hz or

60Hz.

3.4.4.1 The Proposed P-Class SEA: Dynamic QDSC Filter Algorithm

The structure of the proposed QDSC algorithm is presented in Fig. 3.6.

The discrete sampled waveform xin is first cached in the buffer; a data

selector selects the cached data by the index obtained through calculating
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the closest integer value of Fs(TN +∆T )/n, wherein Fs is the sampling rate and

k is the delay factor. The selected data is then outputted from the buffer

and multiplied by a unit static vector (e j2π/k). Finally, the multiplication

result and the original sampled input waveform at the current timestamp

are summed and the output (xout ) of the QDSC module is reported.

Figure 3.6: Functional diagram of the proposed QDSCn algorithm.

The transfer function of a QDSC filter is defined by

H( f ) =
1
2

[
1+ exp

(
j
2π

k

(
1− (TN +∆T ) f

))]
, (3.23)

The value of k directly affects not only the buffer length and consequently

the speed of the algorithm’s dynamic response, but also the phasor mea-

surement accuracy. We choose QDSCk in octave with k = [4,4,4,8,16,32,64]

connect all QDSC modules in cascade; as shown in the frequency response

diagram presented in Fig. 3.7, all odd harmonics except the positive fun-

damental frequency (h = 1) would be eliminated, the gain for h = 1 is one,

and no phase shift exists. Hence, this configuration could extract the

positive-sequence fundamental phasor of one single-phase waveform in

(3.12).

38



−9 −7 −5 −3 −1 1 3 5 7 9 11
0

0.2
0.4
0.6
0.8
1

U
n
it
y
G
ai
n

−9 −7 −5 −3 −1 1 3 5 7 9 11
−π
−π

2

0

π
2

π

Harmonic order

P
h
a
se

(r
a
d
)

Figure 3.7: Frequency response of the cascaded QDSCk with k=[4, 4, 4, 8,
16, 32, 64].

3.4.4.2 The ProposedM-Class SEA: Dynamic Gaussian-Weighted Least

Square Taylor Series (GWT-M)

Inaccurate estimation of ∆T in QDSC could potentially hinder a stable

frequency response and desired performance in (3.23). Therefore, we intro-

duce a simplified Gaussian-weighted least square Taylor Series SEA. We

here express the cached fundamental waveform by (3.12) as follows:

xph,1[n], xph,1(nTs) =
1
2
~Aph,1[n]e j2πFNnTs+

1
2
~A∗ph,1[n]e

− j2πFNnTs, (3.24)

where “∗” denotes the conjugate operation, and ~Aph,1[n] is the static vector

of the fundamental positive sequence at time slot n in the buffer, and

n = 0 indicates the current time slot. With n = 0,1,2, · · · ,Nd-1,Nd, a queue of

sampled xph with length Nd+1 is obtained in the buffer at the current time

slot. Nd needs to be an even number that guarantees an odd number of time

slots in the buffer to estimate the phasors through Taylor series. Meanwhile,

the peak of the Gaussian window is located in the middle of the cached

waveform. Therefore, the phasor estimation physically has a constant delay

with Nd/2 time slots. To compensate the phase shift caused by this delay,
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the evaluation in (3.24) turns to be

xph,1[n] = P[n]+P∗[n]

P[n] = e j2πFN
Nd
2 Ts · 1

2
~Aph,1[n]e j2πFNnTs

(3.25)

The second-order Taylor polynomial of ~Aph,1[n] is

~Aph,1[n] = ~A(0)
ph,1+~A

(1)
ph,1·(n−

Nd
2 )Ts+~A

(2)
ph,1·

(n−Nd
2 )2T 2

s
2

(3.26)

~A(0)
ph,1, ~A

(1)
ph,1, and ~A(2)

ph,1 are the static vectors of the fundamental positive se-

quence, the first, and the second derivative of the static vector, evaluated at

point Nd
2 , respectively. The derivative of (3.26) gives out

~A′ph,1[n] = ~A(1)
ph,1 +

~A(2)
ph,1(n−

Nd
2 )Ts. (3.27)

Applying the Gaussian window, the three phasors and their conjugates

are evaluated via the weighted least square as

~A = (BH GB)−1BH (G ·C ), (3.28)

~A = [~A(2)
ph,1,

~A(1)
ph,1,

~A(0)
ph,1,

~A∗(0)ph,1,
~A∗(1)ph,1,

~A∗(2)ph,1]
T , (3.29)

C =
[
xph[0], xph[1], xph[2], · · · , xph[Nd ]

]T
, (3.30)

where B is a constant matrix of size (Nd +1)×6 [138], and C is the cached

original waveform samples in the proposed M-Class SEA buffer. G is the

Gaussian weight of length Nd + 1. H is the Hermitian transpose. The

operation of Gaussian weighted window and the actual observed data in

the buffer is demonstrated in Fig. 3.8.

With ~A achieved in (3.29), the output of the suggested GWT-M algorithm
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Figure 3.8: The Gaussian window operation and actual observation in the
buffer.

can be assessed via (3.31)–(3.34):

Am = |~A(0)
ph,1|, (3.31)

Φm = ∠~A(0)
ph,1, (3.32)

Fm = FN−∆ fm, (3.33)

ROCOFm =
−∆ fm[n]+∆ fm[n−1]

Ts
, (3.34)

∆ fm =
Im{~A(1)

ph,1 · e
− j∠~A(0)

ph,1}
2πAmTs

. (3.35)

At this stage, ∆T can be evaluated in (3.36) and can be directly sent to the

QDSC module.

∆T =
∆ fm

F2
N−∆ fmFN

(3.36)

As ROCOF from the proposed P-Class and M-Class SEAs is achieved

through assessing the frequency derivatives, a low-pass filter (LPF) is needed

to smoothen both the ROCOFm and ROCOFp estimation during disturbances.

3.5 Numerical Study

This innovative framework for distributed intelligence can be divided into

three stages illustrated in Fig. 3.9: (i) online feature extraction and pattern

recognition, (ii)real-time event detection and classification, and (iii) adaptive
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selection of synchrophasor estimation algorithms (SEAs). The performance

of each module is extensively analyzed and numerically investigated under

variant conditions in this section.
GPU

Featur e 
Ex t r act i on

Event  
Detect i on

SEA   
Select i on

Signal  
Acquisi t i on

Figure 3.9: Architecture of the proposed analytics within a smart sensor.

3.5.1 Waveform Specifications, Configurations, and Assumptions

All the proposed modules share a sampling rate of 9.6 kHz at power grid

nominal frequency of 60 Hz, where up to 50th order (3 kHz) of harmonics

is considered in the simulations [25]. According to the Nyquist sampling

theorem, the sampling rate used here has a maximum 4.8 kHz coverage as

desired. We assumed no congestion during data transfer or Analog to Digital

(A2D) conversion. Mathematically, the wavelet transform (WT) should be able

to cover the frequency range from 1Hz to 3 kHz; the computing complexity of

extracting such a frequency range could be reduced while sufficient feature

extraction performance is ensured. In the proposed pseudo-continuous

quadrature WT (PCQ-WT) design, we chose the scaling factor ak ranging

from 1 to 256 and in a dyadic dilation manner, i.e., ak = 2i, wherein the

exponent i is equally sampled within [0,8], i.e., pseudo-continuous. Through

this design, the frequency resolution is reduced at the high-frequency

range since the harmonics are usually sparse along the spectrum that

requires less resolution. Meanwhile, at the low-frequency range including

the fundamental frequency, the frequency resolution is enhanced since the

60 Hz waveform is of most interest. When considering the feature exaction
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performance (accuracy and speed), we chose the wavelet transform window

size of 0.02 second in real-time, and time bins W=192 in (3.6) Section 3.3.2.

For simplicity, we use a fixed time shift factor bk=96.

Table 3.1: Specifications of the Input Test Waveform Parameters

Test Name Input Range

Signal to Noise Ratio (SNR)* 40dB

Frequency Step -5Hz to 5Hz

Magnitude Step 0.1–2pu

Phase Step ±π/18 radian

Harmonic Distortion 0.5%–10%THD; order up to 50th

Out-of-Band Interference 10Hz to 120Hz; level 0.01–0.1pu

Amplitude Modulation 0.1Hz to 5Hz; level 0.005–0.1pu

Phase Modulation 0.1Hz to 5Hz; level 0.005–0.1pu

Frequency Ramp ±0.01Hz/s to ±1Hz/s, within ±5Hz

Single-Line-to-Ground (SLG) Fault∗∗∗ Magnitude Drop 0.2–1pu

Line-to-Line (LL) Fault∗∗∗ Magnitude Drop 0.2–1pu**

Line-to-Line-to-Ground (LLG) Fault∗∗∗ Magnitude Drop 0.1–1pu

*Applied to all test signals.
*Phase shift occurs at faulted lines.
**For αβ -frame signal only

The specifications of the test power waveforms are selected according

to [25,44] as detailed in Table 3.1. In total, twelve types of waveforms are

simulated corresponding to various grid operating conditions: (i) frequency

step change, (ii) magnitude step change, (iii) phase step change, (iv) harmonic

distortion, (v) out-of-band interference, (vi) amplitude modulation (AM), (vii)

phase modulation (PM), (viii) frequency ramp, (ix) single-line-to-ground (SLG)

fault, (x) line-to-line (LL) fault, (xi) line-to-line-to-ground (LLG) fault, and

normal operating condition. All test waveforms have a Gaussian background

noise with 40dB signal to noise ratio (SNR).
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3.5.2 Stage One: Feature Extraction

3.5.2.1 Waveform Feature Extraction under Transient Events

Several transient events are simulated and analyzed as follows: the

magnitude step (Figs. 3.10a and 3.11a), the frequency step (Figs. 3.10b

and 3.11b), and phase step (Figs. 3.10c and 3.11c).

During the magnitude step change event, the intensity/height of the

main tune decreases in the scalogram of αβ -frame in Fig. 3.10a and similar

behavior can be seen in Fig. 3.11a. However, the low frequency portion

(160 to 256) is still discontinuous. Comparing features of the frequency

step which are shown in Fig. 3.10b and the phase step in Fig. 3.10c, the

patterns emerging during 10ms to 30ms in the αβ -Frame are quite similar,

i.e., both of them show a valley in the main tune (highest portion) after

10ms of the events, but the pattern in Fig. 3.10b representing a frequency

step change is more intermittent than that in phase step shown in Fig.

3.10c, especially between the scale values from 64 to 128. In contrast,

when observing patterns during 15ms to 25ms from the features extracted

from the single phase waveform, the differences are obvious; in Fig. 3.11b,

the pattern from frequency step change event is symmetric around 20ms,

which is 10ms after the time when the event happens; In Fig. 3.11c, the

pattern corresponding to the phase step change is disorganized. However,

unlike the magnitude step change event, both main tunes (dark red) dim at

time t = 20ms, which is 10ms after the events occur. One can see that the

proposed PCQ-WT pattern recognition algorithm has successfully recognized

the unique peculiarities in the signals originated from fast-transient events.

Also, the signal signatures have appeared almost immediately as the events

happen, making them suitable for online monitoring applications.
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(a) Magnitude Step

(b) Frequency Step

(c) Phase step

Figure 3.10: Extracted features from αβ -frame waveform during fast-
dynamic transient events: (a) magnitude step change of 0.2pu at t = 10ms;
(b) frequency step change of -2Hz at t = 10ms; (c) phase step change of -10◦
at t = 10ms.
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(a) Magnitude Step

(b) Frequency Step

(c) Phase Step

Figure 3.11: Extracted features from simulated single-phase waveforms
during fast-dynamic transient events: (a) magnitude step change of 0.2pu at
t = 10ms; (b) frequency step change of -2Hz at t = 10ms; (c) phase step change
of -10◦ at t = 10ms.
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3.5.2.2 Waveform Feature Extraction under Periodic Events

The following comparisons focus on the emergence of the slow-transient

events with periodic impacts on power waveforms. The simulated events

include out-of-band interference (Figs. 3.12a and 3.13a), amplitude modu-

lations (Figs. 3.12b and 3.13b), and phase modulations (Figs. 3.12c and

3.13c).

First, during the Out-of-Band inferences—Fig. 3.12a and 3.13a—periodical

patterns appeared in the main tune; also the edges (dark gray) of the main

tune vary periodically. It should be noticed that the patterns do not have

the same frequency as the inference signal’s frequency. This behavior is

distinguishable from the features extracted from the Amplitude Modulation

(Fig. 3.12b) and Angle Modulation (Fig. 3.12c) tests. Focusing on the

features obtained from the single phase waveform in Fig. 3.13a, the main

tune as well as its edge have gone through some deformations, and this

peculiarity has the same frequency as that in Fig. 3.12a.

When comparing the Amplitude Modulation and Angle Modulation tests,

the edge of the main tune is flat, but the pattern differences are obvious.

In the αβ -Frame, the center of the main tunes (cyan area) of Amplitude

Modulation in Fig. 3.12b shows periodical variation over time, and this

variation is intermittent with clean edges in the zoomed plot; in contrast, the

center of the main tunes Fig. 3.12c corresponding to the Angle Modulation

is always continuous. However, both features extracted from Fig. 3.12b and

Fig. 3.12c show 5Hz patterns which match the modulation frequency. A

similar phenomena can be found when comparing the features extracted

from single-phase waveforms. Figure 3.13b shows a discontinuity at the

center of the main tune, but in Fig. 3.12c, the main tune is still continuous.

Here, one can see that the proposed PCQ-WT algorithm could suc-
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cessfully extract unique features in the waveforms; such patterns convey

important information on the underlying slow-dynamic events and provide a

foundation based on which machine learning analytics and decision making

platforms can operate in real-time.
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(a) Out-of-Band Interference

(b) Amplitude Modulation

(c) Phase Modulation

Figure 3.12: Extracted features from simulated αβ -frame waveform during
slow-dynamic steady-state events: (a) out-of-band interference of 100Hz at
t = 0.01s; (b) amplitude modulation with magnitude of 0.05pu and frequency
of 5Hz at t = 0.04s; (c) phase modulation with magnitude of 0.1pu and
frequency of 5Hz at t = 0.04s.
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(a) Out-of-Band Interference

(b) Amplitude Modulation

(c) Phase Modulation

Figure 3.13: Extracted features from simulated single-phase waveform
during slow-dynamic steady-state events: (a) out-of-band interference of
100Hz at t = 0.01s; (b) amplitude modulation with magnitude of 0.05pu and
frequency of 5Hz at t = 0.04s; (c) phase modulation with magnitude of 0.1pu
and frequency of 5Hz at t = 0.04s.
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3.5.3 Stage Two: Event Detection and Classification

3.5.3.1 Model Configuration

.
.

.
.

A

B

C

Figure 3.14: Architectural diagram of the proposed CNN configuration with
indicated parameters.

The overall framework proposed for online event detection via smart

sensors is demonstrated in Fig. 3.14. Our proposed convolutional neural

network (CNN) analytics contain three convolutional layers (Conv1, Conv2

and Conv3), two max-pooling layers (MP1 and PM2) and two fully-connected

layers (FC1 and FC2) with the following specifications: Input(256×385)–

Conv1(100, 5×11)–MP1(3×3)–Conv2(100, 5×5)–MP2(3×3)–Conv3(64, 5×5)–

FC1(600×1)–FC2(12×1). Both αβ -frame and single-phase scalograms are

fed into the proposed analytics for a duration of 40ms (385 data samples),

which is treated as the observation window. Conventional images have

homogeneous units on the horizontal and vertical axes, while the scalogram

axes carry different information on either time or frequency. A wide kernel

(5×11) in Conv1 that can extract more information from the transitions

along the time axis is applied. The stride of Conv1 is (2,3), and Conv2

and Conv3 use strides with a size of (1,1). Except for FC1 layer, batch

normalization is used in each convolutional and fully connected layers. In

Conv3 and FC1, Dropout [139] is used to prevent over-fitting. Rectified
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Linear Units (ReLUs) are chosen as the activation function in the neural

network. Cross-entropy is used as the loss function. Additional details of

the proposed CNN architecture (e.g., the number of convolutional kernels)

can be seen in Fig. 3.14; note that there are four CNNs sharing exact same

architectures. They, however, need to be trained twice since Phase A, B, and

C are symmetric and share one CNN using the same parameters, while the

other CNN with different parameters corresponds to the αβ -Frame.
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(a) αβ -Frame (b) Single Phase

1: Normal 2: Frequency Step 3: Magnitude Step 4: Phase Step 5: Harmonic Distortion 6: Out-of-Band

7: Amplitude Modulation 8: Angle Modulation 9: Frequency Ramp 10: SLG 11: LL 12: LLG

(c) Event Indexing

Figure 3.15: Test results of the proposed CNN engine; detection accuracy is presented in two confusion matrices
for the αβ -frame and single-phase waveforms.
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In this dissertation, we generated 8,000 samples for each type of event for

training the CNNs and another 1,000 samples of each type for validations.

In each data sample, only one event occurs at a random time within the

20ms run-time window. The initial phase angle of the waveforms was

also randomly selected. During the training process, CNN1, CNN2, and

CNN3 are trained using the single-phase scalograms. In order to ensure

the maximum information discovery from the scalograms (e.g., during

multi-phase events), the proposed event detection engine also utilizes the

correlations between three-phase waveforms, which is through processing

the αβ -frame scalograms by CNN4. Finally, another 1,000 samples of each

event type are generated for blind testing and verifying the event detection

accuracy.

3.5.3.2 Offline Event Detection Accuracy

The event detection test results on a variety of events simulated offline

are summarized in two confusion matrices presented in Fig. 3.15. The

overall detection accuracy of the proposed mechanism using the αβ -frame

and single-phase scalograms are found 90.10% and 90.20%, respectively.

The “true" label stands for the actual (simulated) test events, and the “pre-

dicted" label corresponds to the classification outcome of the proposed CNN

modules. For example, one can see in Fig. 3.15(a) αβ -frame detection result,

that for a “Frequency Step” event, the predicted label matches the true label

with 99.1% accuracy. This reflects that 99.1% of the 1000 frequency step

samples are correctly classified as “Frequency Step".
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Figure 3.16: Online event classification test results: phase step event occurs
at t = 0ms; the Event Index is listed in Fig. 3.15(c).

3.5.3.3 Online Event Classification Application

The previous analyses verified the promising accuracy of the proposed

event detection scheme. We here conduct an online experiment on the

combined feature extraction and event detection mechanisms. Note that

the feature extraction module takes approximately 1.20±0.23ms to oper-

ate and the event classification engine through CNN takes approximately

1.04±0.31ms to generate the outcome. As the total operation time of the

proposed event detection mechanism is 2.24±0.39ms, which is much less

than one fundamental cycle of the power grid (16.67ms), the proposed

mechanism suites well the real-time event detection applications. We here

use synthetic waveforms to test the online classification performance of the

proposed analytics. In order to avoid possible congestions, the observation

window of the features (40ms duration) is generated every 4ms, which is

larger than the combined processing time.

An example classification result on a Phase Step event experiment is

demonstrated in Fig. 3.16. The numbers along the Y-axis stand for the
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event indexing in Fig. 3.15; the X-axis represents the time in milliseconds.

One can see that it took approximately 20ms for the proposed scheme

to correctly detect the simulated event using the αβ -channel scalograms,

while it only took approximately 12ms to detect the correct event using

the Phase A waveforms. It can be also noticed in Fig. 3.16 that an event

classification delay and residual do exist. The reason lies in the fact that

the event is hard to be classified before the corresponding patterns and

signal signatures fully move into the observation window. Similarly, when

the patterns start phasing out of the observation window but before they

fully vanish, the classification outcome is found unstable. However, such

inaccuracies in the output only last for 20ms, i.e., 1.2 fundamental cycles;

this delay is still within the desirable limits and acceptable. Meanwhile, it

can be seen in all figures in Section 3.5.2 that the center of signal signatures

resulted from the fast-dynamic transient events can be observed after 10ms

of the occurrence. With a conservative estimation, the fingerprint of the

event can be generally revealed and classified after one fundamental cycle

(16.67 ms) plus 2.24±0.39ms, which is approximately 20ms. Therefore, the

proposed event classification scheme can meet the standard granularity

limits [25] and achieves the desired performance requirements for real-time

applications.

We also test the proposed framework on a record waveform of duration

0.7s, the result of which is shown in Fig. 3.17. The top heat-map is

the event detection results over time, where the confidence rate of the

classification is marked with different colors. One should notice that,

during Normal operating condition, the confidence rate is not very high,

but the classification is still correct. Detection errors always exist during

the transients between two different events. The Phase Step is detected
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1: Normal 2: Magnitude Step 3: Phase Step 4: Harmonic
5: Out-of-Band 6: Amplitude Modulation 7: Angle Modulation 8: Frequency Ramp

Figure 3.17: Online event detection simulated on a single-phase voltage
waveform: detected result (top) and original waveform (bottom).

correctly within 10ms and it takes another 40ms to return back to normal;

similar result can be observed for the Amplitude Step event. Since Amplitude

Modulation reveals similar Patterns when compared to the Amplitude Step

event (bottom plot), the CNN module classified it as the Amplitude Step,

but when the magnitude starts decreasing, the CNN module shows a low

confidence rate in classifying the event as Amplitude Step and then selects

the event correctly. In order to avoid this miss-classification particularly

for slow-dynamic and long-impact events, a wider observation window is

recommended, which will compromise the time efficiency in detecting the

transient events.

3.5.4 Sensitivity Analysis

3.5.4.1 Pseudo-WT Scaling Factor Redundancy Test

To examine the PCQ-WT’s advantages over the conventional WTs, we

implement different sets of discrete scaling factors into the modified Gabor
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wavelet. All the scaling factors’ bases are set to be two, i.e., a = 2i, where i are

linearly-increasing real numbers with different step sizes. The conventional

WTs use a step size of one in i, i.e., i = 0,1,2,3.... In the proposed PCQ-WT,

the equivalent step size is 1/32, and the value of i is linearly increasing

from 0 to 8. Therefore, in the redundancy test, the values of exponent

i are selected in the range of [0, 8] for all WTs to ensure the identical

coverage ranges of the maximum and minimum frequencies. Meanwhile,

the step sizes of i are 1, 1/2, 1/4, 1/8, 1/16, and 1/32, respectively in

each scaling factor redundancy test; thus, the exponents’ step sizes of the

scaling factors between conventional WT and the proposed PCQ-WT are

covered and different feature extraction resolutions are achieved. In order

to utilize the same CNN structure in the training process and make the

scaling factor’s exponents the only variable in the redundancy test, all the

generated 2-D scalogram images are reconstructed with 256 pixels along

the scale axis by zero-order hold; this is because the lower scaling factors

will lead to smaller sizes of scalograms along the scale axis which makes the

sizes of the input images for CNN no longer consistent. Similar to Section

3.5.3, and based on Table 3.1, we generated 8,000 samples for each type of

event for training the CNN and another 1,000 samples of each event type for

validation. Finally, another 1,000 samples of each event type are generated

for the blind testing validations.

The redundancy test results using different step sizes in the scaling factor

exponents are shown in Figure 3.18 through bar plots. One can see that,

by using the conventional WT scaling factors (i with step size one), the event

detection accuracy is the lowest in processing both single-phase waveform

and αβ -frame waveform scalograms. When using smaller step sizes in i, the

accuracy starts increasing. For the single-phase waveform, the accuracy
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Figure 3.18: Wavelet scaling factor redundancy vs event detection accuracy.

rate becomes stable when the step size is 1/8 or smaller, and decreasing the

step size will not improve the accuracy rate significantly. Nevertheless, for

αβ -frame, the event detection accuracy from the one using step size of 1/32

(same as the proposed approach) is the highest. Also, one can notice that

when using the step size of 1/2, the accuracy improvements are the highest

for both single-phase and αβ -frame waveform. Therefore, and according to

the above analysis, one can conclude that properly adding redundancy in

the scaling factors will increase the feature extraction performance; however,

decreasing the step size of the scaling factors would not always benefit

the feature extraction performance since the computational complexity will

increase as well, due to the additional pixels generated in the scalograms.

3.5.4.2 Background Noise Sensitivity Test

To test the sensitivity of the proposed feature extraction and event detec-

tion mechanism to background noise in the sampled waveform, a sensitivity

test with white Gaussian noise is performed. The SNR used in the noise
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Figure 3.19: Background noise intensity vs event detection accuracy.

sensitivity test are 0dB, 10dB, 20dB, 30dB and 40dB. In this test, the

waveform samples of each event type in the training, validation and testing

dataset are 8,000, 1,000 and 1,000. All the waveform samples’ parameters

and settings are selected according to Table 3.1.

The noise sensitivity test results are demonstrated in Figure 3.19. As

expected, when the SNR decreases, the event detection accuracy drops for

both single-phase and αβ -frame waveform applications. The SNR values for

transmission systems are as high as 80 dB to 90 dB, whereas for distribution

systems, the values typically range between 40 dB to 80 dB [140]. However,

the proposed event detection approach can still provide an accuracy rate

above 80% even if the SNR in the waveform is 30dB. This proves that the

proposed approach has promising noise resistance capability for monitoring

both transmission and distribution systems during dynamic and static

operating conditions.

60



3.5.5 Stage Three: Adaptive SEA Selection

In order to achieve high-fidelity synchrophasor measurements at all times,

knowledge on which SEA best suits a certain type of event and a resulting

grid operating condition is needed. The proposed framework for adaptive SEA

selection could house multiple installed SEAs, the outputs of which could be

adaptively selected as needed; we, therefore, integrate several different SEAs

in the analyses of this Section as follows. A dynamic Quadrature Delayed

Signal Cancellation SEA for high-speed P-Class applications (QDSC-P) and

a Gaussian Weighted Taylor Series least square SEA for high-accuracy M-

Class applications (GWT-M) are proposed in Section 3.4.4. We also included

an “enIpDFT” SEA [33] and a P- and M-Class SEA from [141] which we call

the “P&M”. We categorized the enIpDFT as a P-Class SEA due to its high

response speed verified and reported in [33]. When using the P&M SEA, we

denote P&M-P and P&M-M to represent the functionalities corresponding to

P-Class and M-Class applications, respectively. The two SEAs are primarily

used for performance comparison with our proposed QDSC-P and GWT-M

SEAs. The PMU reporting rate of 60 frames/second is here applied with all

SEAs sharing the same sampling rate of 9.6kHz.

3.5.5.1 Model Configurations and Parameter Settings

The proposed configuration of the QDSC-P SEA has been introduced

in Section 3.4.4.1. The GWT-M SEA possesses a Gaussian window with a

length of 4.8 fundamental cycles and the shape factor α = 3.6; the enIpDFT

SEA is characterized via a Hann window with a length of 3 fundamental

cycle—the same as that utilized in [33]. The P&M-P and P&M-M SEAs use a

Kaiser window of length 3.8 and 5.8 fundamental cycles, respectively [141].
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Since the evaluation of the Rate of Change of Frequency (ROCOF) is

performed through the derivative of frequency by time, filtering the noise

and the distortion by higher-order low-pass filters (LPF) can significantly

reduce the ROCOF error (RFE). This, in turn, results in a slower ROCOF

measurement. In order to ensure a fair performance comparison of different

SEAs when assessing ROCOF, an LPF with the following transfer function

is applied when needed:

h(z) =
0.0968z+0.0968

z−0.8063
, (3.37)

This applied setting ensures an acceptable dynamic response speed within

the maximum RFE limits as enforced in [25].

3.5.5.2 Steady-State Compliance Tests

Frequency Sweeping Test Results: We conduct a frequency sweeping test

for the signal frequency to change ranging from 55Hz to 65Hz as required by

the IEEE standard [25] for both P-Class and M-Class SEAs. The maximum

Total Vector Errors (TVEs) for all SEAs within the proposed sensor technology

are assessed and demonstrated in Fig. 3.20a, from which one can see that

the outputs from all SEAs result in TVE measures less than 1%, except for

the enIpDFT (solid green line): when the frequency is less than 57.5Hz, the

TVE exceeds the 1% threshold.

For the P-Class SEAs, the Frequency Error (FE) limit is set to 10mHz

according to [25]. The proposed QDSC-P (dashed blue line) in Fig. 3.20b is

observed to reach its maximum FE (±5mHz) at f=55Hz. For the enIpDFT

SEA, the FE stays within the limit only when f is around the nominal

frequency and it quickly exceeds the 5mHz limit when f ≤ 59.7Hz and f ≥
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Figure 3.20: Performance evaluation of different SEAs under Frequency
Sweeping tests.
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60.9Hz; therefore, the FE results in Fig. 3.20b reveal that the P-Class

enIpDFT SEA fails the conducted tests in the required frequency range

from 58Hz to 62Hz. When focused on FE, the results demonstrate that

the proposed QDSC-P outperforms the other two SEAs. The P&M-P SEA

(dashed brown line) stays within the limits when the off-nominal frequency

is beyond ±4.15Hz, which satisfies the standard requirement. In the M-

Class FE plot of Fig. 3.20b, our proposed GWT-M SEA (solid blue line) stays

within the M-Class FE limit (5mHz) when f is in the designated range, but

the P&M-M fails when f > 63.6Hz or f < 56.3Hz.

Figure 3.20c illustrates the RFE performance comparison of the inte-

grated SEAs within the smart sensor. One can see from the test numerical

results that only the proposed QDSC-P SEA satisfies the P-Class standard

requirement (RFE ≤ 0.01Hz/s) at the frequency range from 58Hz to 62Hz.

The RFE corresponding to the P&M-P SEA exceeds the desired limit when

f > 61.5Hz or f < 58.5Hz; additionally, the reported RFE for the enIpDFT

SEA fails the compliance thresholds in the entire frequency range tested,

where its minimum RFE is found 0.13Hz/s at f=60.2 Hz. For the other

two M-Class SEAs, both the proposed GWT-M and P&M-M fail to meet the

standard requirements, as the corresponding RFEs quickly exceed the limit

when the off-nominal frequency is 0.7Hz and 1.0Hz, respectively. However,

the proposed GWT-M SEA performs better than the P&M-M SEA, as the

former can tolerate a wider off-nominal frequency range.

Modulation Test Results The modulation tests need to be considered in

two scenarios: Amplitude Modulation (AM) and Phase modulation (PM).

• Amplitude Modulation Tests: Through the AM test results presented

in Table 3.2, one can see that all the integrated SEAs within the
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developed smart sensor solution meet the standard requirements,

except the enIpDFT; the P&M-P SEA and the proposed GWT-M SEA

reveal the best performance for the P-Class andM-Class measurements,

respectively, under AM conditions.

• Phase Modulation Tests: The performance of all integrated SEAs

during the PM tests is listed in Table 3.3. Among the P-Class SEAs, the

P&M-P provides the lowest TVE, while our proposed QDSC-P reveals

the best performance when targeting FE and RFE measures. The

enIpDFT SEA fails the PM tests as the corresponding FE (marked in

yellow) exceeds the standard limit of 60mHz [44]. Among the M-Class

SEAs, both GWT-M and P&M-M meet the standard requirements, but

the proposed GWT-M SEA shows a better performance during the PM

tests; it could, hence, be a promising candidate for synchrophasor

measurement during such incidents.

Table 3.2: Amplitude Modulation (AM) Test Results

P-Class Maximum Error
TVE (%) FE (mHz) RFE (Hz/s)

Max Limit 3% 60 3
QDSC-P 1.950% 8 0.193
P&M-P 0.017% 1 0.031
enIpDFT 7.850% 69 8.090

M-Class Maximum Error
Max Limit 3% 300 15
GWT-M 0.019 % 0.17 0.120
P&M-M 0.068 % 0.40 0.264

Harmonic Distortion and Out-of-band Interference Tests: The perfor-

mance of different SEAs under slow-dynamic steady-state tests of harmonic
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Table 3.3: Phase Modulation (PM) Test Results

P-Class Maximum Error
TVE (%) FE (mHz) RFE (Hz/s)

Max Limit 3% 60 3
QDSC-P 1.915% 0.6 0.019
P&M-P 0.017% 0.7 0.031
enIpDFT 7.850% 68 8.093

M-Class Maximum Error
Max Limit 3% 300 30
GWT- M 0.018 % 0.2 0.119
P&M-M 0.068 % 0.4 0.264

distortion and out-of-band interference are illustrated in Table 3.4 and Table

3.5, respectively. During a harmonic distortion event, the proposed QDSC-P

SEA results in the lowest TVE, FE and RFE indicators when compared to

other SEAs. It is worth noting that although the RFE results (marked in yel-

low) corresponding to the P&M-P and enIpDFT SEAs exceed the designated

standard limit, the problem could be solved by using a higher-order LPF

but at the cost of a slower dynamic-response speed. A similar observation

can be made from the results presented in Table 3.5. As one can see, the

maximum RFE indicator (marked in yellow) corresponding to the GWT-M

and P&M-M SEAs are in the same order of magnitude, and they are larger

than the prescribed limits; such violating RFEs can be also mitigated by

applying an LPF.

3.5.5.3 Dynamic Compliance Tests

We here test and evaluate the dynamic response performance of various

SEAs in order to verify their compliance with the standard requirements [25].

Frequency Ramp Test Results: In this test, a frequency ramp rate of ±

1Hz/s is applied to the waveforms fed into the smart sensor solution. The
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Table 3.4: Harmonic Distortion Test Results
P-Class Maximum Error

TVE (%) FE (mHz) RFE (Hz/s)
Max Limit 1% 5 0.01
QDSC-P 0.005% 0.31 0.004
P&M-P 0.014% 1.75 0.398
enIpDFT 0.061% -3.75 4.184

M-Class Maximum Error
Max Limit 1% 25 6
GWT-M 0.003 % 0.19 0.333
P&M-M 0.003 % 0.32 0.468

Table 3.5: Out-of-band Interference Test Results

M-Class Maximum Error*
TVE (%) FE (mHz) RFE (Hz/s)

Max Limit 1.3% 10 0.1
GWT-M 0.011 % 0.02 0.562
P&M-M 0.005 % 0.04 0.875

*: No requirement for P Class

TVE results indicating the performance of different SEAs in response to

the ramp test are presented in Fig. 3.21a. One can see that the enIpDFT

SEA fails to meet the standard requirements, while the remaining SEAs

are observed in full compliance. Figure 3.21b and 3.21c compare the FE

indicators when evaluating the performance of different SEAs under the

frequency ramp test. The proposed QDSC-P and GWT-M SEAs along with

the P&M-P all continuously meet the standard requirements, while the

P&M-M SEA is in compliance only when 56.5Hz ≤ f ≤ 63.5Hz. The enIpDFT

SEA constantly fails the frequency ramp test; as illustrated in Fig. 3.21d,

the RFE results for the enIpDFT SEA remains always beyond the standard

limits. Both QDSC-P and P&M-P SEAs meet the standard RFE threshold in

the range of 56.5Hz ≤ f ≤ 63.5Hz. Evaluating the RFE indicator, one can
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see in Fig. 3.21e that both M-Class SEAs fail the frequency ramp test. The

GWT-M SEA can only comply with the standard requirements within the

58Hz ≤ f ≤ 62Hz, while this is valid for the P&M-M SEA in a narrower range

of 58.5 Hz ≤ f ≤ 61.5 Hz. It is worth noting that the proposed QDSC-P SEA

can tolerate larger off-nominal frequencies (i.e., lower RFE when f is close

to 55Hz) and is able to function as an M-Class SEA to evaluate ROCOF. This

can be achieved by tuning its LPF at the very minimal cost of the algorithm’s

response speed.
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Figure 3.21: Performance evaluation of different SEAs under Frequency Ramp tests.
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Step Change Test Results We here evaluate the dynamic response of

different SEAs in response to the input magnitude and phase step change

events.

• Magnitude Step Tests: One can see in Fig. 3.22a that the TVE indi-

cator corresponding to the QDSC-P SEA offers the fastest convergence

speed (13ms) when the magnitude step of 0.1pu occurs. The P&M-P

SEA takes 40ms to return below the limit (which is more than two

times of that for the QDSC-P SEA) and fails to meet the standard re-

quirement of 1.7/ f0=28.3ms. Both M-Class SEAs achieve the standard

compliance requirement of the TVE response time limit (79ms). Figure

3.22b illustrates the FE comparisons of different SEAs. The enIpDFT

SEA is found the fastest (taking only 46ms) to return below the desired

FE limit, while this time is 60ms and 82ms for the P&M-P and QDSC-P

SEAs, respectively. Unfortunately, both QDSC-P and P&M-P SEAs

take longer than the desired 3.5/ f0=58.3ms response time limit. The

GWT-M SEA takes 70ms and the P&M-M SEA takes 85ms to converge,

which are within the 120ms prescribed response time limit in [25].

With a focus on the RFE indicator, the enIpDFT SEA fails to meet

the standard requirement and, hence, is not included in the results

presented in Fig. 3.22c. The QDSC-P SEA fails the magnitude step test

as it violates the P-Class RFE response time limit (4/ f0=66.6ms). Since

removing the LPF would not improve the ROCOF response speed of the

QDSC-P SEA, it is concluded not suitable for ROCOF measurements

particularly during dynamic test conditions. The P&M-P SEA takes

63ms to return back to the RFE limit which satisfies the standard

response time requirement. Compared to the GWT-M SEA, the P&M-M

SEA shows the slowest RFE convergence speed, but is still within the
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129ms M-Class response time limit under dynamic test conditions.

Hence, the proposed GWT-M SEA is concluded as the most promising

candidate for M-Class ROCOF measurements.

• Phase Step Tests: According to the results presented in Fig. 3.23a,

none of the integrated P-Class SEAs meet the standard TVE response

time limit of 28.3ms under phase step test events. Amongst, the P&M-P

SEA takes the shortest time (42ms), followed by the enIpDFT (43ms)

and QDSC-P (52ms) SEAs. In contrast, both M-Class SEAs meet the

TVE response time requirement of 79ms. The proposed M-Class GWT-

M takes the shortest time (50ms) to return below the desired limit when

a phase step change occurs, while P&M-M SEA takes the longest time

(63ms) to converge. It is found, in Fig. 3.23b, that the enIpDFT SEA is

the fastest (46ms) to converge and satisfy the P-Class FE response time

limit (58.3ms). While the proposed QDSC-P and P&M-P SEAs take,

respectively, 120ms and 60ms, they both fail to meet the standard FE

response time requirement. The FE indicators reported for the two M-

Class SEAs comply with the standard requirements. The RFE results

for different SEAs in responding to a phase step event are compared in

Fig. 3.23c. The P&M-P SEA still complies with the RFE response time

requirement for P-Class ROCOF measurements, while the QDSC-P

SEA fails to achieve so. The RFE results for the M-Class SEAs reveal

that the proposed GWT-M outperforms P&M-M when comparing the

converging speed.
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Figure 3.22: Performance evaluation of different SEAs under Magnitude
Step test of 0.1pu.
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Figure 3.23: Performance evaluation of different SEAs under Phase Step
test of π/18.
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3.5.5.4 Adaptive SEA Selection Mechanism

Table 3.6: Best-Fit SEAs for Phasor Measurement under Different Test
Scenarios and Operating Conditions

C† Phasor Frequency ROCOF
Abnormal P P&M-P QDSC-P
Frequency M GWT-M
Harmonic P QDSC-P
Distortion M GWT-M

Out-of-Band
M

Interference
P&M-M GWT-M

Phase P P&M-P QDSC-P
Modulation M GWT-M
Amplitude P P&M-P
Modulation M GWT-M

Frequency Ramp
P P&M-P QDSC-P
M GWT-M

Magnitude Step
P QDSC-P enIpDFT P&M-P
M GWT-M

Phase Step
P P&M-P enIpDFT P&M-P
M GWT-M

†: PMU Class.

We have examined and analyzed the performance of various SEAs within

the proposed smart sensor solution. The test results verified a fact that

different SEAs perform differently under various test scenarios and simu-

lated operating conditions. Our approach to synchrophasor measurement

is, hence, adaptive in that only the best-fit SEAs are activated at any time

instant, thereby ensuring high-fidelity measurements. The results are

demonstrated in Table 3.6, offering a holistic view on the performance and

advantage of each SEA with regards to different performance metrics of

interest. The results presented in this table can be employed as a mecha-

nism for adaptive SEA selection in response to a detected event. Meanwhile,
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Figure 3.24: An example of the online event classification (Stage 2) jointly
with the SEA selection (Stage 3) during a harmonic distortion event.

one can see in Table 3.6 that the proposed QDSC-P and GWT-M SEAs are

selected in more than 70% (i.e., 33 out of 45) of scenarios, which verifies their

effectiveness in improving the synchrophasor measurements. Moreover,

the tests conducted in Section 3.5.3 verified that the proposed adaptive

SEA selection mechanism can ensure the desired accuracy and speed re-

quirements of different end-use applications that utilize the synchrophasor

measurements. Note that the proposed adaptive mechanism is generic

enough to accommodate other SEAs that are not investigated here but of

interest to the user.

3.5.5.5 Demonstration of An Integrated Application

An example integration of the suggested SEA selection mechanism in

conjunction with the event detection and classification modules is demon-

strated in Fig. 3.24. With the occurrence of a simulated harmonic distortion

event in the waveforms and following a transition period of maximum 20ms

(as marked in red), the SEA selection mechanism selects the best-fit SEA

to achieve the high-fidelity measurements under the detected event. When
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the harmonic distortion event disappears and the corresponding waveforms

return back to normal, it will take a maximum of 20ms to switch back to the

SEA most suitable for measurement during normal operating conditions in

the grid. Therefore, an awareness on the performance of the installed SEAs

is crucial for the successful functioning of the proposed sensor technology.

An investigation on the performance of different SEAs within a smart sensor

was presented earlier in Section 3.5.5.1-3.

3.6 Conclusion

The chapter presented innovative data-driven analytics embedded in a

smart sensor solution technology; the proposed solution transforms the

existing centralized monitoring and control paradigms to distributed intelli-

gence for online situational awareness in power grids. Furthermore, the

proposed smart sensor is housed with an adaptive SEA selection mechanism,

a framework that ensures high-fidelity synchrophasor measurements at all

times. Various stages of the presented technology were numerically analyzed

and verified: online feature extraction and pattern recognition, real-time

low-latency event detection and classification, and adaptive measurements.

Through extensive testing and analyses, it was concluded that (i) the pro-

posed event detection and classification scheme using machine learning

analytics could provide real-time, accurate, and informative guidelines on

the ongoing operating conditions in power grids, thereby facilitating active

and automatic control actions in response; (ii) different SEAs perform differ-

ently under different events and operating conditions in the grid. With the

knowledge on the performance of different embedded P-Class and M-Class

SEAs under different grid operating conditions, the best-fit SEA outputs

would be selected in an automated manner for high-fidelity measurements.
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Chapter 4: Smart Sensor Technology for High-Impedance Fault

(HIF) Detection

4.1 Abstract

Accidents caused by faults on overhead power lines have been more

frequently reported under extreme weather conditions and may strongly

threaten the safety and stability of the power grids, e.g., massive wildfires

caused by the electrical arcs or lines getting in touch with vegetation, relay

miss-operations, etc. It has been widely recognized that the electric safety

concerns engendered by overhead line faults have to be timely and properly

addressed to minimize the subsequent risks and damages. However, the

existing monitoring devices and protective relays can barely detect high

impedance faults (HIFs) and are unable to warn the system operators until

serious abnormalities or damages are observed. To further investigate this

smart sensor concept in this specific high-level event detection application

and meet the urgent and yet challenging demand of a fast and accurate detec-

tion of HIFs, a modified core detection engine is developed and implemented

to detect HIF events in the distribution systems.

In this Chapter, the background information on and existing modeling

methods for the HIF event are first presented in Section 4.2. Then, an

improved HIF model and the work flow of the modified HIF event detection

engine are introduced in Section 4.4 and Section 4.3. The detailed technol-

ogy and configuration of the proposed HIF detection approach is presented

in Section 4.5 and tested under a variety of simulated conditions in Section

4.6. The numerical results demonstrate its efficacy and superiority over the

state-of-the-art advancements.
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4.2 Background of High Impedance Fault

One safety-threatening disruption in power systems is recognized as

High Impedance Faults (HIF), the detection of which has long remained

a challenging concern in the electric industry. HIFs can cause “arcs” or

“flash-over” from the wires, through the air, to the neighboring trees, other

vegetation or equipment, where it can cause fires, injuries, or even fatali-

ties [142]. A life-threatening example is the constant exposure and contact

of a power line with a tree branch during high-wind conditions, which can

threaten homes in residential neighborhoods and spark wildfires in rural

areas. Such types of faults are commonly caused by undesired contacts

with bare energized electrical conductive parts, the high-impedance na-

ture of which significantly restricts the flow of fault current to a level hard

to be detected by the overcurrent protective relays [143]. Also, the exist-

ing commercial microprocessor-based protective relays activate a tripping

decision when the electrical measurements are observed well beyond the

detection threshold; however, an unsatisfactory performance is observed in

their detection logic when facing the HIF events. Electrical safety studies

have shown that conventional protection schemes detected and cleared only

17.5% of staged HIFs [2,3,144]. Therefore, HIF detection and localization

in electrical power systems yet remain a safety-threatening challenge for

power system protection engineers, a fast and accurate solution to which

is urgently needed to limit the safety risks, prevent power grid operation

violations, and save human lives [145].

Many research works have been conducted in diagnosing HIFs, each

with some advantages and disadvantages; reference [146] harnessed the

high-frequency content in real vegetation fault signatures and proposed a
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method for the detection of distinct and very small-current HIFs. In [147],

an HIF detection approach for power distribution networks is suggested

using fuzzy logic control that evaluates the 3rd and 5th harmonics in the

electrical current signals. However, due to the different HIFs characteris-

tics compounded by the existence of harmonics and noises in the power

waveforms, their accuracy and speed performance may be compromised

in real-world scenarios. A scheme to detect HIFs using the Time-Time (TT)

transform that analyzes and determines the fault wave patterns is intro-

duced in [148]; this scheme can handle low signal to noise ratio (SNR) in

power waveforms through a threshold selection procedure using unscented

transformation (UT). While it can be applied to microgrids with different

ratings and structures, the detection threshold must be tailor-made and

adjusted appropriately. Reference [149] presented a variable-importance-

based feature selection method to identify HIFs from a large pool of signal

signatures; this feature selection scheme utilizes the discrete Fourier trans-

form (DFT) and Kalman Filter (KF) for harmonics coefficient estimation and

HIF duration and magnitude measurement.

With the rapid advancements in Artificial Intelligence (AI), many re-

searchers have implemented various HIF detection techniques through a

variety of machine learning technologies. References [142,150,151] utilized

waveform pattern analysis and Support Vector Machine (SVM) to classify

and ultimately detect HIFs in power grids. In [3], semi-supervised learn-

ing and probabilistic learning are used for HIF detection and localization,

revealing promising detection accuracy, but with a compromised response

time of half a second. In [152], an HIF detection approach using empiri-

cal mode decomposition (EMD) combined with an artificial neural network

(ANN) is proposed, where the HIF detection and classification are achieved
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through predominant harmonic signatures caused by HIFs in the electri-

cal signals. Discrete wavelet transform is applied in [153] to monitor the

high-frequency components and Long Short Term Memory (LSTM) to detect

HIFs, revealing detection accuracy of 90% under scenarios with clean (not

noisy) measurements. An HIF detection approach using discrete wavelet

transformations and Back Propagation Artificial Neural Network (BP-ANN)

is introduced in [154] and tested using often-noisy real measurement data

from a substation, where the detection accuracy is reported 76%. While

the accurate and swift HIF detection is a yet to be solved challenge in the

electric industry, the state-of-the-art literature has demonstrated that AI

technologies offer a yet-untapped potential in detecting HIFs and improving

electrical safety by enabling a timely warming notification to the system

operator and activating trip signals if needed.

(a) A single-phase diagram for HIF modeling

(b) A two anti-diode HIF model

Figure 4.1: A single-phase diagram for the HIF model in [2,3]
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A single-line diagram of an HIF event in a radial distribution system is

illustrated in Fig. 4.1(a). The sending node is modeled by an ideal AC source;

Z1 and Z2 are known impedance values and can be estimated according to

the system topology and operating conditions; R, L and C stand for the per

unit length resistance, inductance, and capacitance of the line. By applying

Kirchhoff’s voltage law to the dashed circle in Fig. 4.1(a), the following

equation is derived:

vn1 = δ

(
R(in1− ic)+L

d(in1− ic)
dt

)
+ vF (4.1)

where, vn1 and in1 are the sending-terminal voltage and current; v f stands for

the voltage at the location of the fault; and δ is the fault distance from the

sending-terminal. However, during an HIF event, vF and δ are the values to

be estimated. The current flow can be found through

in1 = ic + in2 + iF , ic = δ
dvn1

dt
(4.2)

where, ic, in2, and iF are, respectively, the currents flowing through the shunt

capacitor, received at the end-terminal, and observed at the HIF branch.

Under some HIF scenarios, arcs can be observed when the air gap

between the power line conductor and the high impedance object is energized.

Once the imposed voltage magnitude is higher than the voltage (breakdown

voltage), there would be arc ignitions across the air gap. On the other hand,

an arc extinguishes when the fault voltage is lower than the breakdown

voltage. Therefore, the HIF current changes during each cycle, making its

magnitude follow a non-linear characteristic [155]. Based on the above

properties of an HIF event, an HIF model is developed and has been widely

used in [2,3,142,147,149,152], as shown in Fig. 4.1(b). The fault voltage
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in this model can be written in the following format:

vF =


RF iF +LF

diF

dt
+VFP, iF ≥ 0

RF iF +LF
diF

dt
−VFN, iF < 0

(4.3)

where, RF and LF are the HIF’s resistance and inductance in series; VFP and VFN

are the positive and negative arc voltages during HIF events, which archives

the non-linearity of HIFs. The simulated voltage and current waveforms are

demonstrated in Fig. 4.2. It can be found that although there is almost no

influence on the voltage waveform, the HIF event slightly distorts the current

signal while the current magnitude has remained around the rated range;

in other words, the HIF event cannot be detected easily by the conventional

protective relays. One should note that, at the beginning of an HIF event,

this HIF model can barely match the characteristics of the first period due

to the build-up phenomenon [156]. However, following a few fundamental

cycles, the HIF stabilizes and the fault parameters—RF, LF, VFP and VFN—are

approximated as constant values. Therefore, the HIF current waveform and

the related shoulder phenomenon can still be characterized using the model

presented in Fig. 4.1(b).
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Figure 4.2: Simulated voltage and current waveforms (with per unit values)
captured at the sending-terminal based on [3].

Figure 4.3 illustrates a performance comparison of the STFT and WT.

It can be observed, from the spectrum in Fig. 4.3c and 4.3d, that the HIF

current waveform is featured with more harmonic components at larger than

5th orders, where the performance of the HIF detection method in [147] will

be easily compromised by such harmonic pollution or noise interferences.

Meanwhile, comparing the scalograms in Fig. 4.3e and 4.3f with the spec-

trograms from Fig. 4.3c and 4.3d, one can note that the results from STFT

provide very detailed frequency information, and the scalograms obtained

using Morlet WT from HIF-affected waveform reveal very obvious features

compared to those from the harmonic-polluted waveforms; nevertheless,

the accuracy in frequency measurements is compromised in WT. Therefore,
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(a) Harmonic Waveform (b) HIF Waveform

(c) STFT (d) STFT

(e) Morlet (f) Morlet

Figure 4.3: Comparison of the STFT vs. WT with: HIF-affected waveform
and harmonic-injected waveform starting at t=20ms with harmonic orders
h= 3 and 5 and magnitudes of 0.08pu and 0.08pu, respectively.

a combination of WT and STFT is generally much desired. However, this

could highly increase the computational burden of the detection mechanism,

and in particular, challenge the online applicability of the HIF detection

schemes. In order to archive a low-computing complexity and yet accurate

design, we select WT alone in this research project for power waveform
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feature extraction and HIF detection.

4.3 Proposed HIF Detection Technology

With the Wide installation of Phasor Measurement Units (PMUs) in the

power grid, micro-PMUs (µ-PMUs) in power distribution systems [157] and

many other IEDs with PMU functionalities, HIF detection can be achieved

through such devices with high-precision and high-resolution measure-

ments; that is, the case presented in Fig. 4.1(a) can be easily solved as long

as both sending and receiving terminals are equipped with such devices

that can ensure the availability of high-precision high-resolution electrical

measurements. However, a full observation is very hard to achieve in every

segment of the power network due to the cost limitations [158] and only

the power waveforms from the upstream (sending-end) terminal are usually

measured. Therefore, it makes it very challenging for the HIF detection

and classification scheme to operate as desired since the HIF current is

viewed incremental by the upstream terminal, not large enough to violate

the tripping thresholds in the protective relays, and are often mistakenly

corresponded to the common load increments in the network.

As each single-phase current waveform captured from the upstream

terminal in a radial power distribution system carries information of the

downstream terminal, we mainly focus on detecting low-intensity HIFs

which is one most challenging task in electric industry. The workflow

of the proposed HIF detection technology is demonstrated in Fig. 4.4; it

functionally consists of the following four modules:

1. Signal Acquisition: The proposed framework shares the same input

waveforms of a typical PMU (or protective relay with PMU functionality)

from the Analog to Digital (A2D) processing module. It avoids any
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Figure 4.4: Series of integrated functions in the proposed HIF detection
system.

additional A2D modules in the front-end, and makes the proposed

architecture a economically-viable sensor solution. The waveform data

is stored in the cache for the subsequent analytical processes.

2. Feature Extraction: This module applies pseudo-continuous quadra-

ture wavelet transform (PCQ-WT) to the cached waveform data and

generates scalograms. The scalograms are matrices that contain signal

signatures corresponding to the HIF events in the power grid. The

scalograms are then quantized to digital images in order to compress

the data size.

3. Event Detection and Classification: The images obtained in the

previous stage are fed into a compact CNN that, with a detection

confidence, classifies whether there is an HIF event. Finally, the
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detected event will be reported to the local protection device or the

control center.

As one can see, the proposed HIF detection system only requires software-

level modifications to the existing sensors (e.g., PMUs, protective relays,

etc.), with no additional hardware investments. Here, we utilize a physics-

guided machine learning technique, as the overall detection system only

requires offline training. The training process is under the guidance of the

pre-recorded and/or simulated HIF waveforms as the training dataset.

4.4 Improved HIF Modeling

The waveform assessment based on the HIF model presented in Fig.

4.1(b) is adequate to some extent; however, to enrich the proposed solution’s

knowledge on a variety of HIF waveforms, we propose a new and comprehen-

sive HIF model shown in Fig. 4.5, where the fault resistance and inductance

are assigned to the positive and negative branch. For simplicity, we name

ZFP and ZFN as positive and negative arc impedances, respectively. One

advantage of this proposed model is its flexibility to approximate different

HIF conditions including those studied in [2,3,142,147,149,152].

Figure 4.5: The proposed improved HIF model.
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4.5 Feature Extraction and HIF Detection by CNNs

With the current waveforms carrying valuable information on the under-

lying phenomenon, one can evaluate the current waveform in each phase

to examine the existence of HIFs. First, the current waveform can be gener-

alized by

x(t) = Acos(ωt +φ) (4.4)

where, A, ω, and φ are the magnitude, frequency, and phase angle in each

phase. Although HIF phenomena are hard to detect through current am-

plitudes, such events often cause waveform abnormalities and distortions.

One should note that the orders, magnitudes, and phase angles correspond-

ing to the HIF-caused harmonics would be totally different under different

combinations of HIF parameters. Thus, detecting HIF through analyzing

certain orders of harmonics will be extremely challenging; this is even fur-

ther exacerbated by the existence of noise or other harmonics, altogether

could compromise the performance of the HIF detection schemes. To deeply

investigate the waveform features, we expand the sampled current by the

Fourier series as follows:

x(t) = A1cos(ω1t +φ1)+
H

∑
h=2

Ahcos(ωht +φh)︸ ︷︷ ︸
Harmonic Components

(4.5)

where, h is the order of harmonics; H is the maximum order of harmonics

limited by the sampling rate; Ah, ωh, and φh are the h-th order harmonic

component’s instantaneous magnitude, frequency, and phase angle, respec-

tively. Also, h = 1 stands for the fundamental frequency component. One
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can see, in Fig. 4.2, that the fundamental magnitude is affected by both

HIF and load variation events. Therefore, it is clear that the second term in

(4.5) carries valuable information in assessing the HIF impacts, thus the

main focus in the proposed data mining and pattern extraction process.

4.5.1 PCQ-WT Based Feature Extraction for HIF Events

Apply the proposed modified Gabor WT—(3.13) from Section 3.4.1—to

each harmonic component in (4.5) and the Hubbard–Stratonovich transfor-

mation [137], the WT of (4.5) turns into

X(ωh|a,b) =
Ah

2
e jωh(φh+b) ·aα0

√
πe−

α2
0
4 (aωh−ωc)

2

+
Ah

2
e− jωh(φh+b) ·aα0

√
πe−

α2
0
4 (aωh+ωc)

2︸ ︷︷ ︸
≈0

.
(4.6)

It can be seen that the second term on the right side of (4.6) can be ne-

glected as the exponent in the last exponential operation is a large negative.

When ω0 = ωc/a, X(ωh|a,b) reaches its maximum value, indicating that the

dominant feature of the selected frequency is extracted. Accordingly, and

based on (3.13), the length of the Gaussian window in Gabor wavelet also

adapts different frequencies.

Applying the discrete form of the Gabor wavelet from (3.21) with different

discrete scaling factors ak and time shift bk, we achieve the proposed PCQ-WT

as follows,

X(ωk|ak,bk) =
W−1

∑
n=0

x[n]Ψ*[
Ts(n−bk)

ak
]

=
W−1

∑
n=0

x[n]exp
(
− j

ωc

ak
Ts(n−bk)−

T 2
s (n−bk)

2

a2
kα2

0

)
.

(4.7)
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If the pseudo frequencies of interest and the Gabor wavelet bank are designed

properly, a set of PCQ-WTs in form of a vector Xω can be generated conveying

waveform features in a certain frequency range. During both transient and

steady state operating modes, WT time-frequency analysis is conducted

along time, and a scalogram stream can be then achieved.

4.5.2 CNN Configuration for HIF Detection

With the PCQ-WT extracted features in form of scalograms available,

the HIF detection problem is converted to a supervised scalograms classi-

fication problem. However, the classification of the high-dimensional 2-D

scalograms is challenging. specifically, every frame of the obtained scalo-

gram has hundreds by hundreds (scales× time) pixels; it is very challenging

to process such high dimensional data through the conventional pattern

classification approaches. Here, we convert the PCQ-WT scalograms into

2-D images and propose a compact CNN architecture to classify the HIFs

concealed in the scalograms by the PCQ-WT. The proposed CNN has a

simple architecture for HIF detection, yet achieving a very fast processing

time for online applications.

4.5.3 PCQ-WT and CNN Parameter Setting

The sampling rate Fs for the signal and the feature extraction is 7680Hz

which provides 128 samples per nominal fundamental cycle. The observa-

tion window for the PCQ-WT is set to 308 samples (40ms). The time shift b

for the modified Gabor daughter wavelets is 10ms (77 samples) for simplicity.

The scaling factor a for the proposed PCQ-WT is chosen as 2i, where i is

sampled uniformly from 0 to 8. The central frequency ωc = 1152 and the

pseudo frequency will roughly reach up to the 19th order of harmonics. All
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Table 4.1: Parameter Specifications for Generating the Test Waveforms

System Setting

Vbase * 13.8kV Sbase 0.5 MW

Fs 7.68kHz Line Length 2km

SLoad 0.5 - 1.5 pu pfload 0.8 - 1

HIF Model Setting

Parameter Range Parameter Range

ZFP 0.02 pu - 1.5 pu ZFN 0.02 pu - 1.5 pu

pfFP 0 - 1 pfFN 0 - 1

VFP 0.08 pu - 0.65 pu VFN 0.08 pu - 0.65 pu

Fault Location 1% - 99%

* :A signal to noise ratio of 40dB is added to the AC voltage source.

the Gabor wavelets have 20ms duration. By this design, the computational

complexity in computing the scalograms is reduced, while the pseudo fre-

quency bandwidth coverage for feature extraction will not be compromised.

The scalograms fed into the CNN are cropped from 10ms to 50ms (of the

total 60ms WT output)—i.e., observation+ wavelet length— which has 40ms

(308 samples) duration.

The proposed compact CNN configuration for scalogram classification

is as follows: Input layer (256×308); Convolution (Conv.) layer (32×5×11);

Max-pooling layer (3×3); Conv. layer(32×5×5); Max-pooling layer(3×3);

Conv. layer(32×5×5); Full-connected (FC) layer(200×1); FC layer(3×1).

Conventional images have homogeneous units on the horizontal and vertical

axes, while the scalograms axes carry different information regarding the

HIF events on either time or frequency. Therefore, a wide kernel in the first

Conv. layer that can extract more information from the transitions along the

time axis is used. The stride of the first layer is (2,3), and the remaining Conv.
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layers use strides with a size of (1,1). Besides, batch normalization [159]

is used in the last FC layer. In the last Conv. layer and the first FC layer,

Dropout [139] is used to prevent over-fitting. All activation functions in the

CNN are Rectified Linear Unit (ReLU). We choose cross-entropy as the loss

function. Also, our proposed CNN is not that "deep" compared to the regular

image classification CNNs; the suggested compact CNN architecture further

reduces the computing complexity in HIF detection.

4.6 Case Study and Numerical Experiments

4.6.1 Test Scenarios Configuration

The parameter specifications used for generating the test waveforms are

listed in Table. 3.1. We, in particular, focus on HIF event detection since

conventional faults can typically be detected by existing protective devices.

Three test scenarios (HIF event, load change event, and normal operation

event) are simulated. For each HIF simulation, all parameters are randomly

selected in the designated ranges. In each simulated waveform, only one

event occurs at a random point in time. The waveform generation system is

developed according to Fig. 4.1(a) and the improved HIF model in Fig. 4.5.

Gaussian noises with SNR of 40dB are added to the AC voltage source to

approximate the thermal and measurement noises in different conditions.

A total of 20,000 samples from the test waveforms are simulated for

each event; therefore, a total of 60,000 samples (wavelet scalogram) are

simulated in the MATLAB/Simulink environment. A total of 48,000 samples

are randomly selected as the training dataset, 6,000 samples for validation,

and 6,000 samples for testing datasets. For training the neural network and

increasing the versatility of the CNN, the generated waveforms are manually
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imposed by white Gaussian noise with 30dB SNR. We use Adam [160] as the

optimizer, which has the initial learning rate of 1×10−4, and weight decay

of 1×10−5. We trained the proposed CNN 120 epochs. The best validated

model was recorded and tested.

4.6.2 Experimental Results and Analysis

4.6.2.1 Feature Extraction

The extracted features from an HIF and a load change events are demon-

strated in Fig. 4.6, where the main energy concentration with high intensity

is marked by red standing for the fundamental frequency component ex-

tracted from the waveforms. In Fig. 4.6(a), the HIF at t = 20ms increases the

main energy concentration at t = 30ms, which matches the corresponding

magnitude increase in Fig. 3.3(e). This phenomenon can also be observed

in Fig. 4.6(b), as a load increase will indeed increase the magnitude of the

current waveform. When evaluating high frequency areas in both scalo-

grams, one can see that the higher frequency range (scale from 0 to 96) has

less discontinuous patterns compared to the lower frequency range (scale

from 96 to 192). However, the latter (96 to 192) is discontinuous with ripple

shape carrying significant differences in Fig. 4.6(a) and Fig. 4.6(b).

For the HIF scalogram, the ripple pattern is formed at t = 35ms and

becomes stable afterward; thus, one can see that it will take less than 20ms

(PCQ-WT window length) to reveal the corresponding HIF patterns—some

pyramid shape ripples appear in a group. When there is a load increase

event, the load change feature takes 10ms to emerge (see the input waveform

in Fig. 4.6(b)) and the impact remains consistently present. However, for

scale from 96 to 192, there is no pyramid shape ripple found as those in Fig.

4.6(a). Also, only the intensity of the existing ripples slightly increases. One
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(a) HIF with SNR 30dB

(b) Load Increase with SNR 30dB

Figure 4.6: Test waveform simulation results: (a) HIF event; (b) Load increase
event; both simulated events start at t=20ms.
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should notice that the patterns extracted from this simulated HIF event

approximately covers the scale from 100 to 200, which roughly corresponds

to the 12th to 5th order harmonics in the frequency span.

4.6.2.2 Event Detection

Figure 4.7: Test results of the proposed CNN framework for online HIF
detection and classification

The HIF detection test results are summarized in the confusion matrix

in Fig. 4.7, where the true label stands for the actual tested events, and

the predicted label corresponds to the classification outcomes of the CNN

module. The average accuracy of the proposed HIF event detection scheme

is found 99.95 %. To further examine the online event detection and classi-

fication performance, we used a workstation with a stock eight-core AMD

Ryzen 3800X CPU as the computational platform. We transfer the PCQ-WT

and CNN modules into MATLAB 2020a to record the computational time on

one single core of the CPU. The overall time for processing the PCQ-WT and

CNN is recorded as 6.3±0.6ms, confirming a promising solution to be used
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in real-time HIF detection applications.

Figure 4.8: Online HIF detection on a simulated single-phase current wave-
form: detected result (top) and original waveform (bottom).

We also test the proposed framework on a recorded waveform of 0.45s

duration, the result of which is shown in Fig. 4.8. The top heat-map is

the event detection results over time, where the classification confidence

rate is marked with the color bar. One should note that, during the Normal

operating event, the confidence rate is very high and the classification result

is accurate even though the waveform is polluted with 30dB Gaussian noise

and the distortion is very obvious. Relatively lower confidence rates always

exist during the transitions between two different events.

The Load Change event is detected accurately within 10ms and it takes

another 40ms for the detection scheme to report a normal condition event.

Meanwhile, at the moment of HIF occurrence, the CNN module classified

the first two cycles of HIF-contained waveform (from t = 325ms to t = 355ms)

mistakenly as the load change event. The reason lies in the fact that a load

change event (Fig. 4.6(b)) reveals similar patterns at the very beginning

when compared to the HIF event (Fig. 4.6(a)); therefore, it is very hard to

make a correct detection and classification decision at the exact time when
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Fault Clearing Time

Figure 4.9: Comparison of the proposed approach with conventional protec-
tive relay during an HIF event.

the HIF event happens. However, when the waveform magnitude stabilizes,

the CNN module shows a high confidence rate in classifying the HIF event

correctly. Also, one can see that the maximum peak value of the current

waveform affected by an HIF event is observed 1.25 pu which will barely trip

the protective relays in the absence of the proposed HIF detection scheme.

A comparison between the proposed approach and the conventional

protection relays in dealing with an HIF event is demonstrated in Figure

4.9. When the HIF event occurs, the conventional protective relay cannot

sense this event due to the high impedance nature of the fault and the

corresponding low current generated; thus, a normal operating condition

is mistakenly reported and HIF would not be cleared timely. Consequently,

undesired damages or disasters may be caused, human life and property

would also be threatened. On the other side, however, the proposed scheme

can detect the HIF event and after reaching a timing threshold, the relay

trip actuation command is sent to isolate the HIF. One should notice that

the proposed HIF detection engine can cooperate with the existing protective

relays to provide HIF protection functionality.

In summary, the proposed solution provides satisfactory results in de-

tecting low-intensity HIFs under noisy measurements and can distinguish
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it with load change events. Moreover, the overall detection accuracy is

desirable (99.98%) achieved at a promising detection speed of within 40ms

(33ms delay plus 6.3±0.6ms processing time).

4.7 Conclusion

This chapter presented an effective scheme that leverages artificial in-

telligence advancements for detecting HIFs in power grids and improving

electrical safety. The proposed solution functionally integrates a PCQ-WT

feature extraction tool using a modified Gabor wavelet and a compact CNN-

based event detection technique. Experiment results demonstrated that the

proposed analytics successfully achieved an ultra-fast (within 40ms) and

accurate (99.95% accuracy) HIF detection performance even under noisy

measurements. Also, the proposed function could be embedded within

the existing PMUs and/or other IEDs that are capable of capturing and

processing the power waveforms.
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Chapter 5: Smart Sensor Technology for Detection of

Geomagnetically Induced Currents (GIC)

5.1 Abstract

Geomagnetically induced currents (GICs) in power grids are mainly

caused by geomagnetic disturbances especially during solar storms. Such

currents can potentially cause negative impacts on power grid equipment

and even damage the power transformers resulting in a significant risk of

blackouts. Therefore, monitoring GICs in power systems and developing

solutions to mitigate their impacts before rising to a certain threatening

level is urgently in need. Monitoring GICs is, however, quite a challenge and

costly, as they usually appear in forms of DC components in the high voltage

transmission lines, which are barely accessible through transformers. By

examining the measured currents from the current transformers (CTs), we

developed a solution to detect GICs in power transmission systems using

the smart sensor concept in this chapter. Simulated results verify that the

proposed approach can promisingly estimate GICs in power systems during

a variety of grid operating conditions.

5.2 Introduction to GICs

Geomagnetic disturbances (GMDs) are mainly caused by solar storms,

during which charged particles erupt from solar flares resulting in coronal

mass ejections into space during the intensity peak of the sun’s cycle. Conse-

quently, geomagnetically induced currents (GICs) will appear in the conduc-

tor surface of the Earth. The flow of these currents into power transmission
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lines can potentially cause "half-cycle saturation" of high-voltage bulk power

transformers. This phenomenon can lead to relay miss-operations, voltage

dips, elevated reactive power demand, transformer overheating, disruptive

harmonics, aging or malfunction of the electric power devices, and even a

total collapse of the grid in the worst scenarios [161–165].

Northern North America is particularly susceptible to problems resulting

from GICs. On March 13, 1989, an exceptionally strong GMD caused major

damages to electrical power equipment in Canada, Scandinavia, and the

United States. Hydro-Quebec extra high voltage (EHV) transmission system

experienced instability and tripping of lines carrying power to Montreal

resulting in the total blackout of the Hydro-Quebec system [166,167]. In the

United States, a voltage fluctuation of up to 4 percent was recorded on the

EHV systems in Pennsylvania, New Jersey, and Maryland. On September

19, 1989, a second solar storm damaged the step-up transformers at the

Salem Unit 2 nuclear power plant [168].

Limiting the potential GICs-caused damages in power grids calls for

developing advanced tools and mechanisms to monitor and detect GICs

as they unfold and also solutions to mitigate the impacts before they rise

to a certain threatening level. On one hand, the GMD phenomena may

not always result in GICs in power systems. On the other hand, directly

accessing GICs—which represents itself as a DC component in high voltage

transmission lines—is costly and a challenge. Conventional techniques to

monitoring high voltage transmission lines rely solely on the AC measure-

ments through voltage transformers (VTs) and current transformers (CTs),

simply neglecting the DC components flowing on transmission lines. Addi-

tionally, there are other sources of harmonics in power grids, generated by

nonlinear loads or overloading transformers, that may flow in the grid [169]
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and can interfere with those harmonics generated by GICs, particularly

when GMD level is low. Such interference will make the GICs detection a

challenge, as the measured waveforms from CTs or VTs capture all harmonic

signals together with the fundamental component—50 Hz or 60 Hz.

Several studies have focused on modeling harmonic-embedded power

flows and mitigation solutions when facing GICs in power systems [162,

170–172]. Different mitigation strategies should be taken depending on the

severity of GICs impacts on the grid. However, research and development ef-

forts on GICs impact detection mechanisms are found scarce. The proposed

techniques in [173, 174] are centered on monitoring GICs mainly based

on analyzing the distorted waveforms; however, none has considered the

appearance of other grid harmonics and the conflicting interactions with

those of GICs. Furthermore, thermal noise would be higher in the trans-

former secondary winding due to the accumulated heat during transformer

saturation, which adds another layer of interference, making GICs detection

harder than usual. Additionally, studies in [163] demonstrated that the

excited harmonic current magnitudes of different orders vary when GICs

intensity increases. The harmonic components generated by GICs behave

in different ways and the existing detection mechanisms do not consider

such complex interference.

Studies in [169] show the promising performance of transformer over-

loading detection by applying wavelet transforms. Machine learning mech-

anisms have been widely utilized in solving electric power system prob-

lems [11,48,175,176] and are being frequently approached to revolutionize

the solution techniques and emerging technologies in power grids. Inspired

by the principle concepts of feature extraction and event detection based

on waveform analysis, this chapter proposes a GIC detection solution in
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high voltage transmission systems. Two major time-frequency analysis tech-

niques, namely the wavelet transform (WT) and short-time Fourier transform

(STFT), are applied and their performance are evaluated. We further propose

a GIC detection algorithm centered on a hybrid WT and STFT combined

with a machine learning approach, Convolutional Neural Networks (CNN).

We demonstrate the promising performance of the suggested analytics in

detecting the GIC impacts in power grids under a variety of grid operating

conditions. The proposed framework: (i) is resistive to harmonic distortion

and background noise, (ii) is capable of detecting low-intensity GICs, and

(iii) can be algorithmically embedded within Phasor Measurement Units

(PMUs) and other intelligent electronic devices (IEDs) currently in place for

online monitoring.

5.3 GIC Impact Modeling

5.3.1 Transformer Half-cycle Saturation

The GMD phenomenon introduces an earth magnetic field change rate

of usually below 1 Hz [162]. Typically, GICs can be determined by assessing

the DC network power flow as:

I = GV (5.1)

where G is the network bus admittance matrix, determined by taking into

account the three-phase signals, the substation neutral buses, as well as

the ground resistances. Utilizing the approach presented in [161], the GMD

introduces voltages that can be approximated by

V = ENLN +EELE (5.2)
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Figure 5.1: Half-cycle saturation of a single-phase transformer due to GICs.

where EN and EE are the Northward and Eastward electric field (V/km),

respectively, and LN and LE are the Northward and Eastward distance,

respectively.

In transmission systems, Y-Y configuration transformers are the most

vulnerable to half-cycle saturation during a GMD event. As graphically

demonstrated in Fig. 5.1, this is because the DC flux has the lowest

reluctance path in such scenarios and a semi-saturation can occur [177].

However, GICs alone may not be able to cause a transformer half-cycle

saturation as (i) GICs intensity may be low and (ii) the transformer load

level may be small. According to [163], when a transformer is injected

with different levels of GICs, the harmonic magnitude curves (in frequency

domain) will differ significantly (see Fig. 5.2), thus the waveforms will

change dramatically too. Such behaviours in the waveforms will make the

GICs detection process extremely difficult, calling for a holistic mechanism

and an accurate approach.
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Figure 5.2: Excited harmonic current components in different levels of
GICs.

5.3.2 GIC Waveform Modeling

As the current in the secondary winding of CTs can be captured and

assuming a balance three-phase system, the power waveform in each phase

can be represented using Equation (3.1) from Section 3.3.1). Although

GICs cannot be measured directly, their impacts can be assessed on the

DC saturation level of transformers as GICs generates a set of harmonic

components only during the transformer half-cycle saturation. Thus, the

waveform can be expanded by Fourier series as Equation (4.5), Section

4.5). Under a particular level of GICs, different values of Ah and fh can be

detected according to [163], resulting in a unique set of patterns. A certain

combination of Ah for ωh (for h = 2, 3, 4, ..., H) will possibly be resulted,

even if some GICs-caused harmonics are influenced by those generated

from other sources. The second term in (4.5) will still contain valuable
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information on the GICs impacts and, thus, could be the main target for

data fusion and pattern extraction.

As the feature extraction outcomes through WT are much more conspic-

uous than those of STFT, while compromising the accuracy in frequency

measurements. Therefore, a joint hybrid application of WT and STFT is pur-

sued in this research for waveform feature extraction and the corresponding

analysis to archive the best detection result.

5.4 Feature Extraction and GIC Detection by CNNs

As single-phase CTs receive the current waveforms from the transmission

lines, the GIC impacts can be evaluated through CTs located in different

substations. In this Section, the assessment focuses on one CT modeled

based on the considerations presented in Fig. 5.1 and Fig. 5.2. The

approach is, however, generic enough to be applied to different models and

number of CTs across the system. Moreover, the CNNs are able to generalize

and adaptive to different CT parameters, as long as the waveforms obtained

from a specific CT are included in the training data set.

As wavelet transformations can be considered a special type of convolu-

tion, it is possible to integrate the feature extraction phase of the proposed

approach into the CNNs. Some literature suggested using wavelets to re-

place the kernels of the first layer in CNNs [178] [179] and advocate a better

performance than that resulted from the conventional CNNs [180]. However,

the waveforms in power systems are 1-D and very different from the 2-D nat-

ural images which are featured by edges or spots, etc.; additionally, wavelet

analysis is a mature approach that can extract informative features from

the power waveforms; we, therefore, choose a two-phase scheme (wavelets +

CNN) in our proposed framework.
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5.4.1 PCWT-based Feature Extraction during Transformer Half-Cycle

Saturation

Based on the half-cycle saturation waveform in Fig. 5.1, which is a

Gaussian-like curve, the Gaussian wavelet is a natural candidate for the

mother wavelet. A Gaussian wavelet can be expressed as follows

gn(x) = (−1)n dn

dxn e−
x2
2 , (5.3)

where n is the order of the Gaussian wavelet [181]. According to (3.5), the

WT with Gaussian mother wavelet can be expressed as follows

Xg(ω|a,b) =
1√
Cgn

∫
∞

−∞

x(t)gn(
t−b

a
)dt, (5.4)

and

Cgn = 2π(n−1)!. (5.5)

When conducting the Nth order Gaussian wavelet transform, (5.4) can be

simplified by applying partial integration multiple times (see Appendix A.1

for more details), and (5.4) changes to

Xg(ω|a,b) =
1√
CgN

N−1

∑
n=0

[
(−an dn

dtn x(t) d(N−n)

dt(N−n) g0(
t−b

a )
]+∞

−∞︸ ︷︷ ︸
zero

+
1√
CgN

∫
∞

−∞

aN dN

dtN x(t)g0(
t−b

a )dt.

(5.6)

As x(t) consists of sinusoidal waveforms only, for a given frequency ωh

with Ah and θh, (5.6) can be rewritten as
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Xg(ωh|a,b) =
AhaN√

CgN

∫
∞

−∞

dN

dtN cos(ωht +θh) · e
−(t−b)2

2a2 dt

=
AhaN

2
√

CgN

∫
∞

−∞

dN

dtN [e j(ωht+θh)+ e− j(ωht+θh)]e
−(t−b)2

2a2 dt.
(5.7)

By applying the Hubbard-Stratonovich transformation [137]

√
2πα · e−α

2 x2
=
∫

∞

−∞

e−
y2

2α2− jxydy, (5.8)

and using the rule of sign change when swapping integration limits, (5.7)

can be simplified by substituting y = t−b,

Xg(ωh|a,b) = =
Ah(aωh)

N√
CgN

cos(ωhb+θh +
Nπ

2
)
∫

∞

−∞

e−
y2

2a2− jωhydy

=
Ah(aωh)

N√
(N−1)!/a

cos(ωhb+θh +
Nπ

2
)e−

a
2 w2

h

(5.9)

ωh, Ah, θh are constants for one harmonic component, and N is also a constant

when the order of the Gaussian wavelet is selected. Only b determines the

moment when |Xg(ωh|a,b)| reaches maximum; therefore, we let the value of

cos function be one. In this way, only the value of a controls the attenuation

of the selected frequency components. Figure 5.3a shows the features

when a small value of a (less than four) is selected. One can see that the

frequency coverage focuses on the high-frequency range, and amplification

of these frequencies is low. When the value of a increases, the covered

frequency range gets wider, and the amplification focuses on a certain

range of the high frequency component. On the other hand, it has been

proved that Fourier transform of a Gaussian waveform leads to another

Gaussian curve in frequency domain. Similarly, when choosing a fixed

value of a, the frequency coverage of a Gaussian wave is also a Gaussian-
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like curve. These characteristics are very suitable for feature extraction

corresponding to a transformer saturation event, because the saturation

waveform contains a Gaussian-like curve. Daughter wavelets with proper

values of a could detect saturation and eliminate the influence of high

frequencies. In contrast, the frequency coverage and the gain of the Morlet

wavelet transform (Fig. 5.3b) mainly focus on low frequencies when a is

greater than three. Even though it is a unilateral Gaussian-like curve with

different value of a, the highlighted frequencies are low and suitable for

feature extraction on the fundamental component. Detailed derivation of

the Morlet wavelet transform for a sinusoidal waveform is shown in Appendix

A.2. Therefore, we choose the Gaussian wavelet to be used in PCWT for the

application of interest. Finally, the PCWT for feature extraction for GICs

detection can be easily obtained by applying (3.6) to (5.6). All the parameter

settings will be introduced in Section 5.4.3.

5.4.2 GICs Detection by CNNs

The overall framework for the proposed detection mechanism is demon-

strated in Fig. 5.4. First, PCWT with K number of a and STFT in L time

instants are applied sequentially. Then, the scalogram and spectrogram will

both be of K×L size and carry the valuable information on the intensity of

GICs. The detection process could be converted as a supervised classifica-

tion problem on the scalograms. However, the classification process for the

2-D scalograms is challenging due to their high dimensionality. Specifically,

every frame of the obtained scalogram and spectrogram has hundreds by

hundreds pixels; such high dimensional data is restrictive in most of the

conventional pattern classification approaches. We cast the event detection

(saturation caused by GICs) to an image classification problem based on
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(a) Gaussian Wavelet

 

 

(b) Morlet Wavelet

Figure 5.3: Frequency coverage comparison of the Wavelet transform be-
tween Gaussian wavelet and Morlet (normalized frequency fh is used).

the scalogram and spectrogram; we propose a CNN-based architecture to

classify the images. The proposed CNN offers a simple architecture that

ensures an accurate detection, yet fast and computationally effective. Our

proposed CNN consists of five layers: three convolutional (Conv.) layers

and two fully-connected (FC) layers; the specifications of the CNN will be

introduced in Section 5.4.3. This framework can work as a standalone event
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.

Figure 5.4: The general architecture of the proposed framework for GIC
detection in power grids.

detector or classification tool in a PMU to detect the GICs.

5.4.3 PCWT and CNN Parameter Setting

The sampling frequency used in this chapter is Fs = 9600 Hz, which is

sufficiently high to cover up to 50th order of harmonics. The buffer size

(observation window) for the PCWT and STFT are both set to 192 samples

(20 ms). A Gaussian wavelet with order of 8 is employed. The time shifting

b for all Gaussian daughter wavelets is set to be 10 ms (96 samples) for the

sake of simplicity. The proposed scaling factor a for Gaussian wavelet is

chosen as 2i, where i is sampled among 256 uniform intervals in the range

of [−12,−4]. The Gaussian mother wavelet has 20 ms duration, which is

obtained by applying a unit length (1 s) Gaussian wavelet function into a 20

ms window. This transform is approximately equivalent to applying scaling

factors from zero to eight with a mother wavelet of frequency 4,000 Hz.

Such selection of parameters reduces the computational burden associated

with the scalogram acquisition, while does not sacrifice the bandwidth

coverage for feature extraction. The scalograms have a duration of 40 ms

(385 samples).
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The proposed CNN for scalogram classification is illustrated in Fig. 5.4

with the following architecture: Input layer (256×385) – Convolutional

(Conv) layer (100×5×11) – Max-pooling layer (3×3) – Conv layer (100× 5×5)

– Max-pooling layer (3×3) – Conv layer (64×5×5) – Full Connecting (FC)

layer (600×1) – FC layer (3×1). A wide-shape kernel is chosen in the first

convolutional layer aiming to extract more information of the scalogram and

spectrogram along the time axis. The stride of the convolution operation

in the first layer is (2×3), while that of the other convolutional layers is

(1×1). Batch normalization [159] is used in each Conv and FC layers except

the last FC layer. Dropout [139] is applied in the third Conv layer and the

first FC layer to prevent over-fitting. Activation function used in the neural

network is Rectified Linear Unit (ReLU). Finally, Cross-entropy is employed

as the loss function.

5.5 Case Study and Experiments

5.5.1 Test Scenarios Configuration

Three test cases are chosen from [44] to generate harmonics, aiming

to simulate interferences in real-life power grid operating conditions and

to facilitate the performance evaluations: harmonic distortions, out-of-

band interferences, and harmonics from nonlinear loads. The parameter

specifications of the test power waveforms for CNN training are shown in

Table. 5.1. Three transformer saturation scenarios (AC saturation, DC

saturation, and non-saturation) are associated with four grid operating

conditions (harmonic distortion, out-of-band interference, deployment of

nonlinear loads, and normal operating condition). Therefore, 12 types of test

waveforms are generated in total. All parameters are uniformly located in the
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Table 5.1: Simulated Test Waveform Parameter Specification for GIC Experi-
ment

Test Case
Saturation Type

AC DC NO

Saturation level 0.001pu-0.15pu 0.001pu-0.15pu 0

Harmonic Distortion 0.5 %-10 % THD; random choose up to 50th order

Out-of-Band 10Hz to 120Hz; level 0.01pu-0.1pu

Nonlinear Load 1% to 20% of total load

Normal Waveform from normal operating condition

Note: All generated signal has white Gaussian noise with same signal to noise ratio.

designated ranges. Each type of event occurs within a 20 ms simulation run-

time window randomly and individually. The transformer saturation model

for waveform generation is obtained according to Fig. 5.2. Each type of the

test waveform includes 1,000 samples, and thus, a total of 12,000 samples

(and wavelet scalogram and spectrogram) are simulated in the MATLAB

environment, wherein 10,800 samples are used as the training dataset,

1,200 samples for validation, and 6,000 extra samples are generated for

testing. All test waveforms are polluted by Gaussian noises at three levels of

20dB, 30dB, and 40dB to approximate the thermal and measurement noises

in different conditions. For training the neural network, Adam [160] was

employed as the optimizer, which has the initial learning rates of 1×10−3,

β1 = 0.9, and β2 = 0.999. The network was trained 120 epochs; in every 30

epochs, the learning rate decayed 1/10. The best validated model was

recorded and tested.
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(a) Non-saturation with Harmonics in the grid

(b) AC saturation

(c) DC saturation

Figure 5.5: Test waveform simulation results: (a) polluted with random
harmonics; the AC (b) and DC (c) saturation level is 0.01 pu; all events start
at t=10 ms.

5.5.2 Experimental Results and Analysis

Three patterns generated by PCWT for AC and DC saturation scenarios

plus non-saturation condition are demonstrated in Fig. 5.5. One can see

113



that the scalograms generated by the proposed PCWT successfully reveal

unique features in such scenarios: Fig. 5.5(b) shows consistent spikes

indicating a full-cycle saturation. Fig. 5.5(c) shows one spike only that

stands for a half-cycle saturation caused by GICs. In real-world operating

conditions, the patterns in Fig. 5.5(a) can definitely affect the classification

results during AC and DC saturation. The reason lies in the fact that the

patterns in Fig. 5.5(a) would overlap those in Fig. 5.5(b)(c), if harmonics and

saturation occur at the same time. Therefore, the performance of CNN needs

to be verified in such circumstances, in which the patterns are overlapped.

To verify the accuracy of the proposed solution under different GIC levels,

a quantized test was conducted. The accuracy obtained from using PCWT,

as well as using STFT, are compared with the proposed hybrid approach.

The classification accuracy is tested for five quantized GIC intensity intervals

shown in Table 5.2. The highest accuracy in each scenario among the three

tested approaches is highlighted. One can see that with same SNR, the

detection accuracy increases as the GIC level intensifies. The proposed

hybrid framework has the highest accuracy when SNR is low and the GIC

intensity is weak. When SNR is high, the proposed PCWT could achieve a

desirable accuracy.

In total, the proposed framework successfully achieves the best perfor-

mance even under low-intensity GICs, high harmonics, and elevated noises.

Moreover, the accuracy is still desirable if only using the proposed PCWT as

the feature extraction tool. The framework works sufficiently fast, achieving

the detection results within 30 ms (20 ms wavelet window plus 6.8±2.7

ms the processing time); therefore, the framework can be applied for such

online monitoring applications in power transmission systems.
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Table 5.2: Accuracy Performance of the Test Results

GIC (pu) 0-0.03 0.03-0.06 0.06-0.09 0.09-0.12 0.12-0.15 Overall

20dB

PCWT∗ 83.53% 90.66% 90.71% 90.54% 90.62% 88.97%

STFT 81.30% 90.34% 90.26% 90.38% 90.26% 88.32%

Hybrid∗∗ 83.62% 90.68% 90.72% 90.55% 90.74% 88.99%

30dB

PCWT∗ 88.75% 91.17% 91.15% 91.22% 86.87% 90.38%

STFT 87.47% 90.89% 91.02% 90.95% 90.95% 90.02%

Hybrid∗∗ 88.77% 91.24% 91.28% 91.26% 91.30% 90.52%

40dB

PCWT∗ 90.47% 91.49% 91.53% 91.54% 91.22% 90.95%

STFT 89.30% 91.22% 91.18% 91.26% 91.12% 90.45%

Hybrid∗∗ 90.54% 91.47% 91.39% 91.53% 91.34% 90.92%

*:Proposed PCWT only. **:Proposed PCWT + STFT

5.6 Discussion and Conclusion

This chapter aimed to effectively detect GICs in power transmission

systems during the GMD events. Our proposed approach consists of a

hybrid feature extraction using Gaussian PCWT and STFT, and a CNN-

based event detection mechanism. Experiments demonstrated that the

proposed analytics achieved high-accuracy detection of GICs under different

grid operating conditions. This framework would be installed within PMUs

and/or other IEDs that can capture the power grid waveforms. The future

work can focus on (i) applying the proposed framework to a variety of

transformer saturation models, (ii) investigating the potential use of CNN

or other machine learning algorithms for GICs measurements, and (iii)

integrating the wavelet transformation into CNNs and simplifying the two-

phase framework into one, to further improve its performance in real-time.
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Chapter 6: Smart Sensor Technology for Power Grid Topology

Change Detection

6.1 Abstract

Power system topology changes, realized either through unpredictable

disturbances (faults) or transmission line switching actions in day-to-day

operations, manifests itself via a number of waveforms that can be captured

at the measurement points (substations) in the power grid [182–189]. The

waveforms acquired by the PMUs and/or other intelligent electronic devices

(IEDs) will potentially carry specific features corresponding to the event,

thereby reflecting the dynamics of a network topology change. This chapter

proposes a novel wavelet transform algorithm and implements the event

detection mechanism from the smart sensor framework for online power

network topology change detection, enabling situational awareness spatially

and temporally from one single PMU. Test signals representing different

prevailing conditions in the grid with and without a topology change event

are generated and applied to the IEEE 30-bus test system. The results verify

the accurate performance of the proposed event detection and classification

mechanism for online applications.

6.2 Feature Extraction for Topology Change

6.2.1 Theoretical Foundation

The power network topology change will affect the admittance matrix

and consequently the magnitude and phase angles. This change will reveal

certain features and peculiarities. Note that the admittance matrix is unique
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for a given network topology. Therefore, as the waveform features change

when the system transition from one to another configuration, the topology

change event can be detected and classified. Here, the three-phase waveform

in the transmission system are typically assumed to be balanced, thus, to

simplify the feature extraction process, the αβ -frame waveform (3.3) from

Clarke transformation in in Section 3.3.1 is used to model the input signals.

The proposed wavelet performs a multi-resolution correlation calculation

as described by (3.6) in Section 3.3.2. The PCWT can generally provide the

frequency information through feature extraction of the power waveforms.

The research in this chapter is inspired by the characteristics of narrow-

bandwidth wavelets. A pass-bandwidth around the central frequency is

framed: if the pass-bandwidth is wider on the high-frequency range, the

high-frequency components especially appearing during transients can be

easily captured and even amplified; consequently, the spectrum will show

high-energy concentration in that range. In contrast, the pass-bandwidth

needs to be narrow in the low-frequency range especially around the fun-

damental frequency, so only the fundamental frequency features can be

captured. The proposed wavelet has the following format:

Ψ(t) =
1/a

cosh(2µπ
Fc
a t)︸ ︷︷ ︸

Vanishing

Component

· cos(2π
Fc

a
t)︸ ︷︷ ︸

Periodic

Component

. (6.1)

where µ is a positive pass-bandwidth index; the larger the value of µ, the

wider the pass-bandwidth will be. Equation (6.1) is then converted into a

discrete format as follows:

Ψ[n] =
1
a

cos(2πTs
Fc
a n)

cosh(2µπTs
Fc
a n)

(6.2)
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Four spectrum of the proposed wavelet bank for PCWT are demonstrated

in Fig. 6.1. A proper value of Fc should be selected satisfying the Nyquist

sampling theory; this is seen in Fig. 6.1 (b)-(c), where f is close to ±1/2. If Fc

is larger than a threshold, aliasing occurs which will interfere the extracted

features within [-1/2, -1/4] and [1/4, 1/2] in Fig. 6.1(d). A proper value of

FC and µ are crucial for successful feature extraction.

The PCWT process is then formulated as follows:

Xωk|ak,bk
=

1
ak

W−1

∑
n=0

xαβ [n]Ψ
*[

nTs−bk

ak
]

=
1
ak

W−1

∑
n=0

|Vαβ [n]|e j(2πTs f0n+θ)cos(2πTs
Fc
ak

n)

cosh(2µπTs
Fc
ak

n)

(6.3)

Xωk|ak,bk=0 =
1
ak

W−1

∑
n=0

Vαβ [n]e j(2πTs f0n+θ)[e j(2πTs
Fc
ak

n)
+ e− j(2πTs

Fc
ak

n)
]

2cosh(2µπTs
Fc
ak

n)

=
1
ak

W−1

∑
n=0

Vαβ [n]e
j(2πTs( f0+

Fc
ak
)n+θ)

2cosh(2µπTs
Fc
ak

n)
+

1
ak

W−1

∑
n=0

Vαβ [n]e
j(2πTs( f0−Fc

ak
)n+θ)

2cosh(2µπTs
Fc
ak

n)

(6.4)

expanding (6.3) with all bk = 0, it can be rewritten as in (6.4). Analyti-

cally, the window size W must have sufficient length, and thus, the first

summation in (6.4) plays less of an impact on the energy "spectrum" than

| f0− Fc
a |, since,

| f0 +
Fc

ak
|> | f0−

Fc

ak
| ≥ 0 (6.5)

when f0 = Fc/ak, the PCWT will result in the highest correlation coefficients

with respect to the targeted waveform.
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Figure 6.1: Spectrum of the proposed wavelets for online feature extraction;
(a) Fc = 0.375/T s, µ = 8 (b) Fc = 0.5/T s, µ = 8 (c) Fc = 0.5/T s, µ = 4 (d) Fc = 0.6/T s,
µ = 4.

6.2.2 Transformation of 1-D PCWT to the PCQ-WT

The time-domain αβ components will be utilized to generate a complex-

time signal as presented in (6.3) and (6.4). In order to ensure an effective

feature extraction, the periodic component can be rewritten as a unit rotating

phasor in (6.1), thus the proposed PCQ-WT is achieved as presented in

(6.6).

Ψ[n] =
1
ak

e j2πTs(
Fc
ak
)n

cosh(2µπTs
Fc
ak

n)
(6.6)

119



Therefore, equation (6.4) can be further simplified as in (6.7).

Xωk|ak,bk=0 =
1
ak

W−1

∑
n=0

Vαβ [n]e
j(2πTs( f0−Fc

ak
)n+θ)

cosh(2µπTs
Fc
ak

n)
(6.7)

6.3 Numerical Case Studies

6.3.1 Critical Assumptions

This chapter proposed a novel wavelet transform to extract and classify

unique features of the input power waveforms of a PMU and correlate them

with topology change events. The sampling frequency in this chapter is

9600Hz; therefore, the maximum central frequency of the proposed mother

wavelet is 4800Hz. Usually up to 50th order of harmonics is considered in

power system analysis; therefore, a frequency spectrum ranging from 1Hz to

3000Hz—which is 0.75 times the theoretical maximum central frequency—is

considered; hence, Fc = 3000Hz. To match the frequency spectrum, the scal-

ing factor should ideally be [1, 3000]. However, simultaneous computation of

3000 PCWT is computationally-demanding. Therefore, conducting a down-

sampling in the above frequency range is much preferred. The input signal

has normally the most energy concentration in the low-frequency range,

while high-frequency components will appear during transients. Hence, a

dyadic scaling factor ranging [1,256], i.e., 2[0,8], is sufficient. A total of 256

samples of exponents are uniformly selected and the scaling factor set is

formed.

6.3.2 Test System and Test Cases

In order to evaluate the wavelet performance, the frequency informa-

tion and patterns extracted from the input waveforms are visualized and
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Figure 6.2: Spectrum of the proposed wavelet bank, where the scaling factor
is plotted by log2.

plotted in the time domain. The IEEE 30-bus test system (shown in Fig.

6.3) is selected as the test platform. The waveforms are generated from

PSCAD/EMTDC using system configuration in [190] with simulation step-

size of 6µs and then down-sampled to 9.6kHz. The numerical evaluations

are conducted on the following aspects: (i) waveform feature extraction

during topology change in the system normal operating condition, and (ii)

waveform feature extraction when a fault occurs following a topology change

action. Measurements are acquired from the PMU located at Bus 6. The

computation efficiency of the proposed wavelets is evaluated by measur-

ing the time when the event occurs and that when a deformed pattern is

detected. The following test cases are studied:

• Test Case 1: Transmission line (TL)2-4 and TL2-5 are switched-off, in

two separate scenarios, when the system is in its normal operating

condition.

• Test Case 2: A 3-phase fault occurred at t = 30ms, following a topology

change by disconnecting TL2-4.
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Figure 6.3: Single line diagram of IEEE 30 Bus system.

6.3.3 Results and Discussions

The frequency response of the PCWT wavelet bank, used for feature

extraction in the experiments, is demonstrated in Fig. 6.2. In Fig. 6.4

(a)-(b), features reveal the maximum energy concentration on the funda-

mental frequency. The magnitude of this energy concentration remains

almost constant during both topology change practices. However, when

selecting smaller scaling factors (higher frequency range), the features can

be obviously differentiated. In Fig. 6.4, one can observe a larger energy

concentration on the high-frequency range in (a) than (b). Two energy peaks

are observed in 4(a), one greater than the other. In Fig. 6.4(b), the extracted

feature corresponding to the topology change action is still obvious. It takes

10ms to reveal the significant features in both scenarios.
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Figure 6.4: Simulation results in Test Case 1 where (a) TL2-4 is switched-off
at t = 30ms, (b) TL2-5 is switched-off at t = 30ms.
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The Test Case 2 results are demonstrated in Fig. 6.5. The energy spec-

trum shows the fault features almost instantaneously in both Fig. 6.5 (a),

(b). While it may be hard to visually realize the differences in Fig. 6.5 (a)

and (b), one can see in Fig. 6.5 (c) that, different features are captured when

two different topologies are realized, when an exact same fault appears at

the same time and location (Bus 15). Based on the experiments, one may

expect the possibility that different topology changes, in certain conditions,

may show similar signatures in the data. Furthermore, the developed pat-

tern recognition mechanism offers a promising computational performance,

making it suitable for online applications.
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Figure 6.5: Simulation results in Test Case 2 where 3-phase fault happens
at t = 30ms at Bus 15 (a) during normal operation; (b) after TL 2-4 is switched-
off; (c) feature difference.
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6.4 Conclusion

This chapter introduced a novel multi-resolution wavelet transform, i.e.,

the PCQ-WT, for online topology change detection and classification in

power systems. The proposed approach could successfully capture unique

patterns and peculiarities associated with a network topology change, either

through faults or transmission topology control practices or both. The

waveform classification outcome can be leveraged within PMUs, and other

IEDs with PMU functionality, to archive a fast and accurate topology change

detection. The performance of the proposed algorithm, in terms of feature

extraction accuracy and computation time efficiency, was verified under

multiple test cases representing different operating conditions in an IEEE

standard test system. Future work may include the performance evaluation

of the proposed analytics for topology change detection in power grids under

a wide range of uncertainties [191–201] and in presence of distributed

energy resources [202,202–211] and grid-support services [212–220].
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Chapter 7: Dissertation Conclusion

7.1 Summary

Chapter 2 first introduced the concept of power grid resilience and then

reviewed the existing literature on synchrophasor technology and power

grid event detection. The literature review on event detection mechanisms

included techniques through both conventional measurements and syn-

chrophasor technology. Meanwhile, several SEAs were presented and their

core principles were discussed.

In Chapter 3, details of the proposed smart sensor technology for dis-

tributed event detection and enhanced phasor measurement functionalities

was introduced. The proposed smart sensor solution utilizes sampled

waveform data through the existing A2D modules and extracts the signa-

tures (features) within the electrical waveforms via an advanced PCQ-WT

technique. A machine learning mechanism, i.e., the convolutional neu-

ral network, was developed and installed to detect and classify different

events in the power system based on the extracted features. Meanwhile, the

proposed smart sensor is housed with an adaptive SEA selection mecha-

nism, that is expected to ensure high-fidelity synchrophasor measurements

at all times. The performance of the proposed analytics was numerically

evaluated under a variety of simulated events and power grid operating con-

ditions. Numerical analyses demonstrated the superiority of the proposed

framework in ensuring an online situational awareness in power grids with

high-fidelity measurements at all times.

In Chapter 4, we explored the application of the proposed sensor tech-

nology on HIF detection. This chapter aimed at avoiding the damaging
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consequences of HIFs thereby improving the electrical safety and validating

this proposed technology in a specific high-level event detection application.

In so doing, a modified core detection engine through a compact and efficient

CNN structure was developed to process the extracted features from the

current waveforms and detect the HIF events. Experiment results from a

variety of simulated conditions demonstrated that the proposed analytics

successfully achieved an ultra-fast and accurate HIF detection performance

even under noisy measurements.

In Chapter 5, the impact modeling of GIC events is first introduced, and

then an enhanced event detection engine combined with a hybrid time-

frequency analysis through STFT and PCWT is developed for GIC detection

in the power grid.

In Chapter 6, we explored the application of the proposed sensor tech-

nology in detecting the power grid topology change events. In so doing, a

novel pseudo continuous quadrature wavelet transform was developed for

the grid topology change detection. Detailed analysis and case studies were

presented to demonstrate the feasibility of this new approach.

7.2 Contributions

With the widespread deployment of synchrophasor technology in modern

power grids, systemmonitoring and control settings have been revolutionized

into a new era with high-resolution measurements. To achieve an enhanced

situational awareness in modern power grids, this dissertation presented

an innovative next-generation smart sensor technology through a series of

embedded data-driven analytics and the edge computing capabilities. The

proposed sensor technology ensures a fast and accurate event detection and

classification performance and high-fidelity synchrophasor measurements
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under a variety of system operating conditions.

The dissertation contributions are as follows:

• The proposed framework transforms the existing centralized monitoring

and control paradigms to distributed intelligence for online situational

awareness in power grids.

• Enabling fusing the online measurements and grid monitoring in a

distributed manner can greatly reduce the potential risks to communi-

cation failures, delays/latencies, and cyber-attacks.

• The proposed smart sensor solution can fully unlock the potential of

edge computing capabilities in the intelligent electric devices installed

in power grids.

• Three main stages of feature extraction, event detection and classifica-

tion, and SEA selection are introduced to form the architecture of the

next generation smart sensors.

• A wavelet approach for power waveform feature extraction is developed

which provides satisfactory pattern recognition performance. Also,

this WT is suitable to be applied on both single-phase and quadrature

waveforms.

• An efficient CNN architecture is developed for high accuracy and low

latency event detection and classification applications. The suggested

CNN architecture can be extended for additional types of events if more

labeled data samples are available in the waveform signature pool.

• New P-Class and M-Class synchrophasor estimation algorithms were

proposed, a hybrid of which could ensure fast and high-fidelity syn-

chrophasor measurements.
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• The suggested data-driven solution technology with embedded ana-

lytics can be installed into the existing PMUs at no or very minimum

costs and adjustments, thereby ensuring its interoperability with the

existing setups in practice.

7.3 Suggestions for Future Research

Future research can be focused on investigating the event detection and

assessing the severity of the detected event through CNNs or other machine

learning algorithms. Also, one could approach integrating the feature

extraction functionality within the machine learning technique to achieve

an even more compact solution. The forecasting functionality can be added

to the proposed framework to predict and quickly detect the long-lasting

and slow dynamic events such as the Sub-Synchronous Resonance (SSR)

phenomenon in wind turbines. When the proposed event detection and

localization function is embedded into the PMUs, protective relays, and/or

other IEDs, hardware-in-the-loop performance analysis can be conducted

to verify and validate this concept in real-time operation conditions.
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Appendix A: Appendix

A.1 Derivations of the Gaussian Wavelet Transform

Using the definition presented in (5.3)

∫
∞

−∞

g1(x)dx =−g0(x),
∫
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gn(x)dx =−gn−1(x) (A.1)
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The first and second step partial integration of (5.4) is
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By continuously applying the partial integration, (5.6) can be obtained.

We know gn(±∞) = 0 and dn

dtn x(t) is finite for any value of n; therefore, the

summation in the first part in (5.6) would be zero.
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A.2 Derivations of the Morlet Wavelet Transform

Xm(w|a,b) =
∫

∞
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x(t) 1√
πFB

cos
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e
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e
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(A.4)

where x = (t−b)/a, FB is a constant value representing the decay factor, and

ωc is the center frequency. Using the Euler’s equation and (5.8), we can

obtain

Xm(w|a,b) = aAh√
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