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Abstract
The price‐based unit commitment (PBUC) problem aims to optimise the power gener-
ating units' schedules to meet the system demand with the objective to maximise the
generation companies' (GENCOs') profit. State‐of‐the‐art PBUC models have taken into
account exogenous uncertainties in renewable generation, demand, and price signals. This
study proposes a novel PBUC problem formulation with endogenous or decision‐
dependent uncertainty (DDU) in the elastic portion of the demand. The proposed
PBUC model is formulated as a mixed‐integer non‐linear programming (MINLP)
problem with non‐convex continuous relaxation. A concavification approach is devel-
oped to reformulate the non‐convex MINLP model as an equivalent mixed‐integer
quadratic programming (MIQP) model whose continuous relaxation is convex. Case
studies considering GENCOs owning and operating 3, 12, 19, and 40 generating units
demonstrate the efficacy of the proposed DDU‐aware PBUC formulation on the
GENCOs' anticipated profits.
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1 | INTRODUCTION

Unit commitment (UC) in electric power systems is an oper-
ational scheduling problem that accounts for the hourly
response of the power supply from the generating resources to
the variations in power demand over a short‐term horizon into
the future, typically spanning from one day to one week [1, 2].
The classical UC problem, also known as cost‐based UC
(CBUC), aims to minimise the cost of power generation by
scheduling the status of generating units while satisfying their
ramp up/down limits, minimum/maximum generating capac-
ity, minimum up/down times, and reserve constraints (e.g.,
References [3, 4]). Since the CBUC problem does not
commonly consider the network topology details (with some
exceptions in References [5, 6]), the security‐constrained UC
(SCUC) is utilised by the independent system operators to clear
the market taking into account the network security constraints
[7]. Besides CBUC and SCUC, the other known UC problem,
that is, the price‐based or profit‐based UC (PBUC) problem, is

to maximise the profit of the power generation companies
(GENCOs) highlighting the importance of price signals [8].
The objective function in a typical PBUC problem consists of a
revenue function capturing the selling price contributor to the
GENCOs' profit, and a similar power generation cost function
as that of the CBUC and SCUC problems.

Research on the applications and solutions of the PBUC
problem has been widely conducted over the past decades.
With known forecasted market price inputs, the Lagrangian
relaxation method was implemented to solve the PBUC
problem with energy and ancillary services in Reference [1].
The study in Reference [9] proposed a mixed‐integer linear
programming (MILP) PBUC model considering a large num-
ber of generating units of different types. With the simulta-
neous consideration of power and reserve generation in the
electricity market, the binary fish swarm algorithm was
employed to solve the PBUC problem in Reference [10].
Reference [11] presented a genetic algorithm‐based PBUC
model to obtain the optimal solutions taking the energy
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contracts into account. The PBUC problem for a price‐maker
thermal generating unit was modelled as an MILP problem in
References [12, 13]. Reference [14] utilised a sample average
approximation approach to solve a two‐stage stochastic PBUC
problem with chance constraints considering the participation
of wind power. Given the price quota curve, Reference [15]
presented an MILP PBUC model for a price‐maker participant.
An optimal price bidding curve for the PBUC problem was
developed with different pricing scenarios randomly generated
by the Monte Carlo simulation in Reference [16]. The study in
Reference [17] proposed a PBUC model for electricity storage
arbitrage by accounting for the price effect of charge/discharge
actions of the electricity arbitrage. A stochastic optimisation
formulation for the PBUC problem was modelled in Reference
[18] including a personal rapid transit system with the impact
of wind energy on electricity prices. Reference [19] presented a
hybrid Lagrange Relaxation‐Secant‐Differential Evolution
method to solve the PBUC problem producing better results
with less computational time. A binary firework algorithm was
proposed in Reference [20] to improve the solution accuracy of
the PBUC problem. The research efforts mentioned above all
considered certain, often fixed and forecasted, price signals in
the electricity markets with convex cost functions. References
[21–23] proposed methods to find the optimal price with non‐
convex cost functions in the electricity markets. Reference [22]
proposed a pricing scheme considering non‐convex cost
functions and obtained prices via applying equilibrium con-
straints. Reference [23] reviewed several pricing schemes in the
electricity markets with non‐convex cost functions. Other
research efforts in References [9–15] formulated the PBUC
problem with linear cost functions, while the quadratic cost
function was taken into account in the CBUC objective
function in References [3, 4].

The state‐of‐the‐art models in the literature have primarily
considered a deterministic model for load demand in PBUC
formulations. Harnessing the demand flexibility, demand
response (DR) programs are being widely approached in the
recent years, taking into account the relationship between the
supply and demand in electricity markets [24]. DR programs
capture the changes in the electricity usage by the end‐use cus-
tomers from their normal consumption patterns in response to
variations in the price for electricity over time [25]. In other
words, when the end‐use customers are provided with sufficient
incentives or acceptable prices, they are willing to change
(reschedule or reduce) their energy usage patterns, at times
establishing a trade‐off between their comfort and electricity
bills [26]. By boosting the interaction and responsiveness of the
customers, DR determines short‐term impacts on the electricity
markets, resulting in economic benefits for both customers and
the electric utility company [27]. Common to the DR programs,
demand elasticity is defined as the demand sensitivity with
respect to the price and features a proportional change with that
of the price signals [28]. That is, the demand for a commodity
decreases as the price increases, defined as the elastic demand in
the electricity markets [29]. Accordingly, the elasticity demand
can affect the generation scheduling, where a more elastic de-
mand was found to generally reduce the GENCOs' profits [30].

The proliferation of price‐responsive demands in the electric
sector highlights a motivation for the GENCOs to incorporate
the demand elasticity to price signals into the day‐ahead PBUC
optimisation problem so as to achieve amore realistic estimation
of the profits and generating unit schedules accordingly. In
Reference [31], a stochastic day‐ahead dispatch model consid-
ering DRwas established to analyse the impact of the residential
hybrid energy system on wind power utilisation. A novel retail
market model with flexible and elastic price‐based DR to the
selling prices in Reference [32] demonstrated that the flexible
price‐based DR has a positive impact on reducing customers'
costs. Reference [33] proposed a comprehensive high‐resolution
model for simulating both the elastic and automatic price
responsiveness of demand to analyse the network impacts of
dynamic pricing strategies. The study in Reference [34] formu-
lated the fast‐charging station deployment problem incorpo-
rating the elastic charging demand. The study in Reference [35]
established a discrete time non‐linear autonomous dynamical
system model to capture the interaction and dynamics of the
electricity prices and the total demand including the elastic sector
by deriving an equilibrium. A novel heat‐power trading model
was presented in Reference [36] that addresses the market
equilibrium of an integrated heat‐power system with strategic
providers and demand elasticity. The study in Reference [37]
proposed amarket‐based control optimisationmodel for system
operation considering the electric and social behaviours of the
demand sector captured through attitude parameters in the net
power injection/withdrawal. The study in Reference [38]
investigated the impact of the demand price responsiveness on
the oligopoly market performance by considering exogenous
changes in the own‐price elasticity. A hierarchical model pre-
dictive power dispatch and control strategy for modern power
systems with price‐elastic controllable demand was presented in
Reference [39] with a suggested price‐elastic utility function
model. Reference [40] proposed an approach to determine the
optimum level of the secondary reserve. A day‐ahead scheduling
problem integrating an hourly DR model for both fixed and
price‐elastic demand was proposed in Reference [41] to reduce
the system operation costs. The study in Reference [42] pre-
sented an elastic demand scheduling model for generating a
number of suitable price‐based demand bids and discussed the
impact of DR on the gross surplus from load serving entities.

The extant literature [9–15] on the PBUC problem ignores
the decision‐dependent sources of uncertainty in the decision‐
making process. In the traditional practice, the energy price set
by the GENCOs in the PBUC model is assumed to be known
and acceptable by customers, enabling GENCOs to estimate
the generation profit. The uncertain volume of the elastic de-
mand within the PBUC optimisation problem, however, de-
pends on the corresponding selling price set by the GENCOs,
which itself is the decision variable taken within the PBUC
optimisation model. That is, the elastic customer may or may
not accept the GENCOs' price in the market, thereby resulting
in uncertain willingness‐to‐pay response of the elastic demand
to the energy price. If not properly modelled, the inaccurate
treatment of the customers' response to the GENCOs' set
price may endanger the GENCOs' profit estimation with
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misleading generating unit schedules. Different from the
existing literature, this study proposes a mixed‐integer non‐
linear programming (MINLP) optimisation model for the
PBUC problem under decision‐dependent uncertainty (DDU).
We model the elastic demand as an endogenous or decision‐
dependent source of uncertainty. A concavification approach
is introduced to derive the exact representation of a product of
two continuous variables and to reformulate the MINLP
model as an equivalent mixed‐integer quadratic programming
(MIQP) model whose continuous relaxation is convex. The
effectiveness of the proposed models are tested on a variety of
case studies including GENCOs with 3, 12, 19, and 40
generating units.

The rest of this study is organised as follows: Section 2
introduces the DDU and gives insights on its involvement in
the PBUC problem. Section 3 introduces the proposed PBUC
model with DDU. Section 4 describes the method to refor-
mulate the MINLP problem as an equivalent MIQP formula-
tion. The numerical results and discussions are provided in
Section 5, and finally Section 6 concludes the study.

2 | DECISION‐DEPENDENT
UNCERTAINTY

One may distinguish two main types of uncertainties: exogenous
uncertainties and endogenous uncertainties or DDUs [43, 44].
In the former, the uncertainties are independent of the decisions,
while in the latter, the uncertainty is impacted by the decisions
taken within the optimisation problem. Within the endogenous
or decision‐dependent class of uncertainties, several forms of
DDUs can be also distinguished (see taxonomy in Reference
[43]): Type 1DDUandType 2DDU. In the former, the decisions
impact the probability distribution of (some) random variables,
while the latter class focusses on two‐ or multi‐stage stochastic
programs with recourse in which decisions influence the time at
which information is revealed and the uncertainty is resolved. In
addition to the aforementioned twomain classes ofDDUs, some
other types of DDUs are recently introduced in Reference [43],
involving DDUs in robust optimisation [45] and in dis-
tributionally robust optimisation [46].

From the GENCO's perspective, which attempts to
maximise profit through solving a PBUC optimisation, the
customers' response to the price set for the elastic demand is
uncertain and not known. The GENCO can, however, affect
customers' decision to pay the price set for the elastic de-
mand by varying the price for the elastic demand, which is
one of the decisions in the PBUC problem. The willingness‐
to‐pay response of the elastic demand, whether to accept the
price set by the GENCO, is therefore a decision‐dependent
(endogenous) uncertainty that is affected by the pricing de-
cisions taken by the GENCO (i.e., Type I DDU). The elastic
demand is uncertain and changes over time due to the var-
iations in the corresponding price offered by the GENCO.
Figure 1 illustrates the proposed DDU mechanism in the
elastic demand when integrated into the PBUC problem.
When the decision maker increases the price offered to the

elastic demand—see Decision 1 in Figure 1—the quantity of
the elastic demand decreases, which causes a reduction in
the total demand in the system. With the reduction in the
electricity demand, the generating unit schedules in the PBUC
problem will change accordingly (i.e., their output power may
be decreased, some high‐cost generating units may be turned
off etc.). On the contrary, if the price for the elastic demand
is reduced (Decision 2), the amount of the elastic demand
will increase, indicating that a different schedule for the
generating units will be decided in the PBUC problem.
Therefore, the elastic portion of the demand plays a signifi-
cant role in the proposed PBUC problem formulation and
solutions. Accordingly, we model the elastic demand as a
DDU.

The modelling of the (endogenous) dependency connecting
random and decision variables is challenging and often results in
the formulation of non‐convex problems. To avoid the inherent
modelling and solution challenges, simplifying assumptions are
often used. We refer the readers to [47–51] for a detailed dis-
cussion of these simplifications and the issues they cause (i.e.,
models not representative of the actual problems and ques-
tionable decisions). The proper modelling of the dependency of
the uncertainties on decisions relies on a coupling function [52].
In our model, the demand for electricity is considered to be of
fixed and elastic proportions (fixed demand and elastic demand).
Correspondingly, the model includes the prices for the fixed
demand and the elastic demand. The price for the fixed demand
is set as a parameter known day‐ahead (not a decision), while the
price for the elastic demand is a decision variable in our proposed
PBUCmodel. Here, we represent the decision‐dependent nature
of the elastic demand det (with an upper bound of De

t ) via a
coupling function f ðπetÞ that specifies how the decision variable
πet defining the price for the elastic demand impacts the uncer-
tain quantity of the elastic demand.

det ¼ f ðπetÞ ¼
Me − πet
Ke t ∈ T ð1Þ

The coupling Equation (1) defines the elastic demand as a
decreasing function of the price. The strictly positive parameters
Me and Ke denote the maximum acceptable price by customers
and the slope of the elastic demand bidding curve, respectively.
This indicates that the lower the price for the elastic demand, the
higher its elastic volume. Note that the coupling function is
deterministic and the term endogenous uncertainty or DDU can
at first sound confusing. This terminology has been used for
decades in the literature (see, e.g., References [43, 51]) and we use
it accordingly.

3 | PROBLEM FORMULATION

In this section, we propose a new PBUC optimisation model
(PBUC‐DDU) that explicitly accounts for the DDU nature of
the elastic portion of the demand whose volume is impacted by
the price for the elastic demand in the electricity market. The
proposed model determines the generation output and the
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schedules of the system generating units at each time period to
maximise the GENCOs' profits. A GENCO's profit is
impacted by the amount of power generation output, price,
and the cost of power generation. To capture this dependence,
we define the relationship between the price for the elastic
demand and its volume as πet ¼Me − Kedet , according to the
coupling Equation (1). This linear relationship indicates that
the change in the price for the elastic demand results in a
change in its volume. The proposed model is formulated as an
MINLP problem with the following objective function:

max
P

g∈G

P

t∈T
ðδtp

f
g;t þ πetp

e
g;t þ ρstrsg;t þ ρnt rng;tÞ

h

−ðagλ2g;t þ bgλg;t þ cgxg;t þ Cu
gyg;t þ Cd

gzg;tÞ
i ð2Þ

The objective function maximises the total profit through
effective decision‐making on the price for the elastic demand.
The objective Equation (2) is composed of two terms. The first
term reflects the total revenue achieved by the GENCOs for
selling the generation products, including the amount of
generated power supplying the elastic demand as one of the
income sources. The second term indicates the total costs of
power generation with a quadratic cost function, start‐up cost
and shut‐down cost for the generating unit g [9]. The objective
Equation (2) is quadratic due to the quadratic term agλ2g;t in the
cost function as well as the DDU in the elastic demand that
requires the introduction of a bilinear term πetp

e
g;t. The pro-

posed optimisation model has a mixed‐integer linear feasible
set defined by the operation constraints (supply–demand bal-
ance, ramp rate, min‐up/min‐down time, and reserve)
described in Subsections 3.1–3.4.

3.1 | Supply–Demand balance constraints

In this study, the GENCO serves as a price‐maker entity in the
market, owning and operating a number of generating units.
Here, we define the DR bids consisting of bids for the hourly
fixed demand and the elastic demand. Based on the forecasts
of the fixed demand, the GENCO follows the price for the

fixed demand to sell the generated power, where the higher the
price, the lower the elastic demand. The relationship between
the price for the elastic demand and its quantity is denoted by
Equation (3a), which is linearly presented by References
[28, 42, 53–55]. When the price set by the GENCO is below
the maximum price Me that is acceptable by the customers,
customers may choose to increase their demand, on top of the
fixed demand. While generic enough to accommodate a variety
of price‐responsiveness levels and functions for the demand
across the system, the elastic demand in all four test systems is
assumed to follow a linear price–demand relationship in
Figure 1. Note that the coupling Equation (1) is enforced via
the linking Equation (3a). In an electric power system, the
power balance should hold across the system where the total
generation should be equal to the total required demand. The
amount of the generated power supplying the fixed demand
should be equal to the quantity of the fixed demand, as shown
in Equation (3b). Equation (3c) similarly indicates the power
balance requirements for the elastic demand. The non‐negative
variable det is bounded above by De

t , which represents the
maximum amount of the elastic demand (Equation (3d)). The
sum of the generated power supplying the fixed and elastic
demand represents the total amount of power output provided
by system generators in Equation (3e). Equation (3f) restricts
the price πet from exceeding the maximum acceptable price Me.

πet ¼Me − Kedet t ∈ T ð3aÞ
X

g∈G

pfg;t ¼Df
t t ∈ T ð3bÞ

X

g∈G

peg;t ¼ det t ∈ T ð3cÞ

det ≤ De
t t ∈ T ð3dÞ

pg;t ¼ pfg;t þ peg;t g ∈ G; t ∈ T ð3eÞ

πet ≤ Me t ∈ T ð3f Þ

3.2 | Generators' ramp rate constraints

When the binary variable xg;t ¼ 1, the generating unit g is
online at time period t and its output power at each time period
pg;t is required to satisfy a minimum power capacity limit Pg

‾
—

see Equation (4a). Equation (4b) denotes the relationship be-
tween the generating units' start‐up and shut‐down statuses
based on their dispatch schedules. If the generating unit g is
offline at time period t (xg;t ¼ 0) and online at the following
time period t þ 1 (xg;tþ1 ¼ 1), it indicates that the generating
unit g starts up at time t þ 1, which implies yg;tþ1 ¼ 1. Simi-
larly, the generating unit g shuts down at time period t þ 1
(zg;tþ1 ¼ 1), when it is online at time period t and offline at
time t þ 1. Each generating unit cannot start‐up and shut‐
down at the same time, which is enforced by Equation (4c).
Every generating unit g has its own ramp rate to restrict the
amount of output power variation over time. If the generating

F I GURE 1 The proposed structure for the DDU‐embedded profit‐
based unit commitment problem
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unit g is scheduled continuously from time periods t to t þ 1
(i.e., xg;t ¼ xg;tþ1 ¼ 1, yg;tþ1 ¼ zg;tþ1 ¼ 0), the increase or
decrease in its output power cannot be greater than the ramp‐
up rate αþg or the ramp‐down rate α−

g , as modelled by Equa-
tions (4d) and (4e), respectively. When yg;tþ1 ¼ 1, which in-
dicates that the generating unit g starts up at time t þ 1, the
total power generated by the generating unit g at time tþ 1
cannot be greater than its start‐up limit βþg enforced in
Equation (4d) in order to ensure the security of the generating
units and the system. Similarly, when the generating unit g
shuts down at time tþ 1 (zg;tþ1 ¼ 1) indicating pg;tþ1 ¼ 0, the
total generation output at the previous time t is at most equal
to the shut‐down limit β−

g —see Equation (4e).

Pgxg;t ≤ pg;t g ∈ G; t ∈ T ð4aÞ

yg;tþ1 − zg;tþ1 ¼ xg;tþ1 − xg;t g ∈ G; t ∈ TnfjTjg ð4bÞ

yg;t þ zg;t ≤ 1 g ∈ G; t ∈ T ð4cÞ

pg;tþ1 − pg;t ≤ αþg ð1 − yg;tþ1Þ þ βþg yg;tþ1
g ∈ G; t ∈ TnfjTjg

ð4dÞ

pg;t − pg;tþ1 ≤ α−
g ð1 − zg;tþ1Þ þ β−

g zg;tþ1
g ∈ G; t ∈ TnfjTjg

ð4eÞ

xg;t ∈ f0; 1g g ∈ G; t ∈ T ð4f Þ

yg;t ∈ f0; 1g g ∈ G; t ∈ T ð4gÞ

zg;t ∈ f0; 1g g ∈ G; t ∈ T ð4hÞ

3.3 | Generators' min‐up/min‐down time
constraints

Equations (5a) and (5b) represent the min‐up and min‐down
time constraints [56] for the system generating units. Equa-
tion (5a) ensures that if a generating unit g turns on, it cannot
be turned off immediately and needs to be kept online for at
least τþg time periods. Analogously, Equation (5b) enforces that
if the generating unit g turns off, it should be kept offline for at
least τ−

g time periods.

yg;t ≤ xg;k g ∈ G; t ∈ T; k ∈ ½t;minðτþg þ t; jTjÞ� ð5aÞ

zg;t ≤ 1 − xg;k g ∈ G; t ∈ T; k ∈ ½t;minðτ−
g þ t; jTjÞ� ð5bÞ

3.4 | Reserve constraints

The operating reserve represents the total amount of gen-
eration available from all synchronised generating units in

the system [2]. The operating reserve is composed of
spinning reserve and non‐spinning reserve. The former is
the extra generation capacity that is available by increasing
the power output of the already‐connected generating units,
while the latter is the extra generation capacity that is not
currently connected to the system but can be brought online
with a short delay. A generating unit g can provide spinning
reserve only if it is online, while it can provide non‐spinning
reserve whether it is online or offline. Equation (6a) rep-
resents the total non‐spinning reserve for a generating unit g
consisting of the on‐line and off‐line non‐spinning reserve
capacities. The total generated power of the generating unit
g is made up of its actual output power pg;t to meet the
demand, spinning reserve rsg;t , and non‐spinning reserve rng;t
when it is online, as shown in Equation (6b). Equation (6c)
specifies the upper bound of the total power generated for
the generating unit g when it is online. The limitation on the
operating reserve is represented by Equation (6d)–(6f),
where the variables rsg;t, nþg;t , and n−

g;t are non‐negative.
Equation (6d) enforces that the total amount of reserve
provided by the generating unit g cannot exceed a certain
value Mþg when it is online [9]. Notation Mþg denotes the
maximum sustained ramp rate for the generating unit g.
Similarly, Equation (6e) determines that the amount of non‐
spinning reserve for the generating unit g cannot exceed its
maximum quick‐start capacity M−

g when it is offline. The
binary variable hg;t is equal to 1 if the generating unit g
provides non‐spinning reserve when it is offline at time
period t. The generating unit g cannot be on and off at the
same time, as enforced by Equation (6f). Equation (6g)
stipulates that the total amount of reserve should be equal
to at least the reserve requirement ratio R of the maximum
generation capacity [57].

rng;t ¼ nþg;t þ n−
g;t; g ∈ G; t ∈ T ð6aÞ

λg;t ¼ pg;t þ rsg;t þ nþg;t; g ∈ G; t ∈ T ð6bÞ

λg;t ≤ Pgxg;t; g ∈ G; t ∈ T ð6cÞ

rsg;t þ nþg;t ≤ Mþg xg;t; g ∈ G; t ∈ T ð6dÞ

n−
g;t ≤ M−

g hg;t; g ∈ G; t ∈ T ð6eÞ

xg;t þ hg;t ≤ 1; g ∈ G; t ∈ T ð6f Þ
X

g∈G

ðrsg;t þ rng;tÞ ≥ R
X

g∈G

Pg; t ∈ T ð6gÞ

hg;t ∈ f0; 1g g ∈ G; t ∈ T ð6hÞ

4 | REFORMULATION METHOD

We examine the form and tractability of the proposed MINLP
problem PBUC‐DDU.
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Theorem 1 The continuous relaxation of problem
PBUC‐DDU

max
X

g∈G

X

t∈T

�
δtpfg;t þ πetp

e
g;t þ ρstr

s
g;t þ ρnt r

n
g;t

�h

−
�
agλ2g;t þ bgλg;t þ cgxg;t þ Cu

gyg;t þ Cd
gzg;t

�i

s:to ð3aÞ − ð6hÞ

ð7Þ

is non‐convex.

Proof The feasible set of continuous relaxation of
problem PBUC‐DDU is linear and therefore convex.
Accordingly, we only need to show that the objective
function and, in particular, the non‐linear function

f PBUC−DDU
g;t ðπet ; p

e
g;tÞ ¼

X

g∈G

X

t∈T

πet ⋅ peg;t ð8Þ

is not concave, which can be achieved by showing that its
Hessian matrix

H¼
0 1
1 0

� �

is not negative semi‐definite. This follows immediately by
checking the determinants of the leading principal minor de-
terminants Δ1 ¼ 0, Δ2 ¼ −1 < 0, which indicates that H is
indefinite and, in turn, that f PBUC−DDU

g;t ðπet ; p
e
g;tÞ is not

concave. It also indicates that the continuous relaxation of
PBUC‐DDU is non‐convex. □

Corollary 1 follows immediately.

Corollary 1 The continuous relaxation of problem
PBUC‐DDU is NP‐hard.

Integer problems are typically solved with branch‐and‐
bound or branch‐and‐cut algorithms that solve a continuous
relaxation of the integer problem at each node on the tree. As
the solution process can involve several hundreds or thousands
of nodes, each involving the solution of an NP‐hard contin-
uous relaxation problem, Corollary 1 highlights the difficulty of
solving the problem in its current form and the need to
investigate the possible derivation of a more computationally
efficient reformulation.

We shall now derive an MIQP reformulation model whose
continuous relaxation is convex for problem PBUC‐DDU
whose feasible set is convex. The source of non‐convexity in
PBUC‐DDU is due to the bilinear terms πetp

e
g;t with products

of continuous variables in the objective function. Hence, we
propose a concavification method for the objective function
according to Equations (3a) and (3c).

Theorem 2 Problem R‐PBUC‐DDU:

max
X

t∈T

�
Meπet
Ke −

ðπetÞ
2

Ke þ
X

g∈G

�
δtp fg;t þ ρstr

s
g;t þ ρnt r

n
g;t

−agλ2g;t − bgλg;t − cgxg;t − Cu
gyg;t − Cd

gzg;t
��

s:to ð3aÞ − ð6hÞ ð9Þ

is equivalent to problem PBUC‐DDU and has a convex
continuous reformulation.

Proof. We first rewrite the bilinear term in the objective
function of the PBUC‐DDU problem at each time period t
as πet

P
g∈Gp

e
g;t . By substituting det for

P
g∈Gp

e
g;t based on

Equation (3c), and Me−πet
Ke for det due to Equation (3a), we can

obtain

πet ⋅
X

g∈G

peg;t ¼ πt ⋅ det ¼ πt ⋅
Me − πet
Ke

� �

¼
Me ⋅ πet
Ke −

ðπetÞ
2

Ke :

ð10Þ

Based on the new expression of the bilinear term—see
Equation (10), we can replace the original objective function
in PBUC‐DDU with the reformulated objective function
f RðVÞ. To ease the notations, we define the set of decision
variables V = fðπet , p

f
g;t , rst, r

n
t , λg;t , xg;t , yg;t , zg;tÞ: π

e
t , p

f
g;t, rst, r

n
t ,

λg;t ∈ Rþ, xg;t, yg;t , zg;t ∈ f0; 1gg:

f RðVÞ ¼
P

t∈T

Meπet
Ke −

ðπetÞ
2

Ke þ
X

g∈G

δtpfg;t þ ρstr
s
g;t

�
"

þ ρnt rng;t − agλ2g;t − bgλg;t − cgxg;t − Cu
gyg;t

−Cd
gzg;t

��

:

ð11Þ

The next task is now to demonstrate that the reformulated
objective function f RðVÞ is concave. We can easily obtain the
Hessian matrix of f RðVÞ as follows:

H¼

−
2
Ke 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −ag 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;
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which is a diagonal matrix indicating that the eigenvalues of H

are hii, where i¼ 1…8. Note that the values of Ke and ag are
positive, then h11 ¼ − 2

Ke < 0 and h55 ¼ −ag < 0. Therefore, all
eigenvalues of H are non‐positive, which denotes that the
matrix is negative semi‐definite. With the negative semi‐
definite Hessian matrix, the objective function f RðVÞ is
concave [58]. Note that the feasible set of continuous relaxa-
tion of the R‐PBUC‐DDU problem is linear and therefore
convex. Problem R‐PBUC‐DDU is a convex MIQP model,
since it is a maximisation problem of a concave quadratic
objective function f RðVÞ. As a result, problem R‐PBUC‐
DDU is an equivalent convex reformulation of the PBUC‐
DDU problem. □

Both models PBUC‐DDU and R‐PBUC‐DDU involve
binary variables xg;t , yg;t , zg;t, and hg;t . To investigate the
number of binary variables in both models, we introduce
notation nt ¼ |T| to denote the number of time intervals
and ng ¼ |G| to represent the number of generating units.
Hence, both models have the same number of binary vari-
ables equal to 4ntng. Moreover, all constraints in both models
are linear. The significant difference between the two models
is that model PBUC‐DDU owns a non‐convex objective
function, while the objective function in R‐PBUC‐DDU is
convex. With the non‐convex objective function in the
PBUC‐DDU problem, the optimisation can take a lot of time
(usually exponential) to identify whether the problem is
infeasible or if the solution is globally optimal. Therefore, the
convex reformulation model R‐PBUC‐DDU is more effi-
cient for solving and proving the optimality than the original
non‐convex model PBUC‐DDU.

5 | NUMERICAL RESULTS AND
DISCUSSIONS

In this section, numerical results are presented to verify the
effectiveness of the proposed PBUC model considering the
impact of DDU in the elastic demand. Through several test
cases (see Subsections 5.1–5.4), we compare the perfor-
mance of the proposed models with the original (and
conventional) PBUC model without DDU. Subsection 5.5
analyses the computational efficiency of the proposed
MINLP model PBUC‐DDU and the equivalent MIQP
reformulation model R‐PBUC‐DDU. In this study, the
proposed models are tested on different GENCOs owning
and operating generating units of different sizes and char-
acteristics: 3‐unit, 12‐unit, 19‐unit, and 40‐unit GENCOs.
The detailed data and information on the cost coefficients
and capacity of generating units, fixed load demand at each
time period etc. can be found in electronic Appendix [59].
Here, we consider that the price for the fixed demand and
the market prices for the spinning and non‐spinning re-
serves at each time period are known (forecasted) and
constant in all test systems, the data on which are provided
in [60]. The scheduling time horizon is set to 24 h in all

tests. To investigate the impact of DDU in the elastic
portion of the demand, we study two different cases for
each GENCO: Case I, where the PBUC problem
considering DDU in the elastic demand is applied through
the proposed PBUC‐DDU model, and Case II, where the
traditional PBUC problem (e.g., in [8–10, 19, 20])—which
is a MILP model without DDU—is utilised. In Case I,
the total system demand consists of the known fixed de-
mand and the unknown quantity of the elastic demand,
which is the decision‐dependent source of uncertainty. All
tests are conducted on a PC with an Intel Xeon E5‐2620
v2 processor and 16 GB memory. The optimisation
problems are formulated in AMPL and solved with the
state‐of‐the‐art optimisation solvers Baron 19.12.7 and
Gurobi 9.0.2 for the MINLP problem PBUC‐DDU, and
Gurobi 9.0.2 for the MIQP problem R‐PBUC‐DDU.

5.1 | GENCO with 3 generating units

With the proposed analytics applied, Figure 2 illustrates the
hourly power output of the generating units and the required
demand in Case I. If the generation output for a generating
unit is zero at time period t, this unit is offline at time t.
According to Figure 2, the generating unit g1 is online during
the entire time horizon and is the major source of energy to
satisfy the required demand. The generating unit g2 is online at
t¼ 10–22, while the generating unit g3 is online only at t¼ 8,
9, 23, and 24. The hourly generation output and the required
demand in Case II, where the traditional PBUC model with
no DDU consideration is applied, are shown in Figure 3. The
generating unit g1 is online during the entire time horizon and
offers majority of the needed energy, while the generating unit
g2 has the same schedule as that in Case I—see Figure 2. The
generating unit g3 is online at t ¼ 9, 10, 22, and 23. Comparing
the total demand curves in both figures, it can be noted that
the total demand curve in Figure 2 is smoother than that in
Figure 3. For instance, during the off‐peak time horizon (i.e.,
t¼ 1–8), the total demand increases when considering the
DDU in the elastic portion of the demand. Such growth in
demand can mitigate the variations in the demand curve
during the entire time horizon. Since the elastic demand is a
key feature in DR programs [28], the comparison also in-
dicates that DR programs are able to fill the valleys for the
demand curve. Additionally, the GENCO's profit in the PBUC
problem in Case I is found to be $158,444, which is greater
than that in Case II ($147,974). Hence, GENCOs have the
opportunity to achieve additional profits when effectively
capturing DDUs in the elastic demand into the PBUC opti-
misation problem.

5.2 | GENCO with 12 generating units

Figure 4 presents the schedule of the generating units owned
and operated by the 12‐unit GENCO in both Case I and
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Case II. In Figure 4, different colours represent different
statuses of the generating units at each time period. Here, we
take Case I as an example. The blue colour denotes that a
generating unit is online at the specific time period, while the
red colour represents that the unit is offline. Generating units
g1 and g6–g12 are online during the entire time horizon in
both cases. In Case I, the generating unit g2 is always online,
while unit g5 is always off‐line. The generating unit g3 is online
at t ¼ 7–24, and the generating unit g4 is online at t¼ 9–21. In
Case II, the generating unit g5 is offline during the entire time
horizon. The generating unit g2 is online at t ¼ 10–21, unit g3
is online at t ¼ 8‐22, and unit g4 is online at t ¼ 9–20.
Comparing the two cases, it can be noted that there are more
generating units being scheduled in the off‐peak time in Case
I, where DDU in the elastic portion of the demand is captured.
Moreover, the GENCO's profit using the proposed models in
Case I ($1,725,630) is greater than that in Case II
($1,632,280).

5.3 | GENCO with 19 generating units

The optimal hourly generating unit schedules for the 19‐unit
GENCO in Case I and Case II are presented in Table 1
and Table 2, respectively. According to the results presented,
the generating unit schedules are found the same in both cases.
During the entire time horizon, the generating units g1‐g4 and
g7‐g17 are always on‐line, while the units g5 and g18 are al-
ways off‐line. The generating units g6 and g19 are off‐line only
at t¼ 3‐6. The GENCO's profit in Case I is found
$3,562,990, while it is achieved as $3,483,930 in Case II.
Consistent with the observations in other test cases, the
DDU consideration in the elastic portion of demand in the
PBUC problem can enhance the GENCO's profit in this test
system.

5.4 | GENCO with 40 generating units

Table B‐I and Table B‐II presented in Appendix [59] illustrate
the schedules of the system generating units owned and
operated by 40‐unit GENCO in both the studied test cases
with and without DDU considerations. The generating units
g6, g23, and g38 are online during the entire time horizon in
Case I and Case II, while units g1‐g5, g7‐g17, g19, 20,
g28‐g37, g39, and g40 are offline during the entire time horizon
in both cases. In Case I, the generating unit g21 is online and
g18 is offline during the entire time horizon. Generating units
g22 and g24–g27 switch their on/off status during the time
horizon. In Case II, the generating unit g22 is online and g21
is off‐line during the entire time horizon, while units g18 and
g24–g27 switch their on/off status during the time horizon.
The GENCO's profit in Case I is found to be $1,053,800,
while that of Case II is $1,003,240, again indicating that the
GENCO can achieve additional benefits via the proposed
PBUC‐DDU model.

5.5 | Computational efficiency

The proposed PBUC problem with endogenous uncertainty
(or DDU) is an MINLP optimisation model whose continuous
relaxation is non‐convex and is not amenable to a numerical
solution in its original form. The computational challenges of
the considered problem are exacerbated by the integer vari-
ables and the DDU, whose modelling leads to the introduction
of non‐convex functions. We assess the computational effi-
ciency of the MINLP model PBUC‐DDU and solve the
convex MIQP reformulation R‐PBUC‐DDU. The optimality
tolerance level for each solver is set to 0.001%. In order to
verify the efficiency and optimality of the proposed models, we
designed two sensitivity analysis case studies for each
GENCO: Study I with different selection of the quadratic
term coefficient ag in the generating units' cost function and
Study II with different values of the maximum acceptable
elastic demand De

t based on the base dataset available in Ap-
pendix [59]. We generated and analysed five scenarios for each
study.

F I GURE 2 The optimal hourly generation output from the 3‐unit
GENCO and the required demand

F I GURE 3 The optimal hourly generation output from the 3‐unit
GENCO and the required demand
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5.5.1 | Study I: Different coefficients of the cost
function quadratic term

Table 3 illustrates the proportion of the scenarios in Study I,
which can be solved to optimality (tolerance level ≤0:001%)
within 1 h. Based on the results presented in Table 3, one can
observe that (i) none of the scenarios tested through the
proposed MINLP model PBUC‐DDU can be solved to
optimality within 1 h by the Baron solver, (ii) the MINLP
model could be solved to optimality by the Gurobi solver in
around 80% of the scenarios with the 12‐unit GENCO and
none of those with the 40‐unit GENCO, while all tested
scenarios with the 3‐unit and the 19‐unit GENCOs could be
solved to optimality by the Gurobi solver, and (iii) all scenarios
tested with the MIQP model R‐PBUC‐DDU could be solved
to optimality within 1 h. Table 4 reports the average objective
values, computational times, and the optimality gaps over 5
scenarios in each GENCO for Study I. According to Table 4,
the average objective values for both models obtained by
different solvers are close to each other. The suggested MIQP
model R‐PBUC‐DDU could always be solved to optimality
very quickly. On the two GENCOs where both the MINLP

PBUC‐DDU and the MIQP R‐PBUC‐DDU models are
solved to optimality, the average solution times over 5 sce-
narios is smaller for the MIQP model than that for the
MINLP model (e.g., 0.03125 s vs. 0.1912 s in the 3‐unit
GENCO and 24.525 s vs. 274.75 s in the 19‐unit GENCO).

5.5.2 | Study II: Different maximum elastic
Demand levels

Table 3 presents the proportion of the scenarios in Study II,
which can be solved to optimality within 1 h. According to
Table 3, we can obtain similar observation as in Study I: (i) the
proposed MINLP model PBUC‐DDU tested for all scenarios
cannot be solved to optimality within 1 h by the Baron solver,
(ii) Applying the proposed MINLP model, all tested scenarios
with the 3‐unit, 12‐unit, and 19‐unit GENCOs can be solved
to optimality by the Gurobi solver, while none of them with
the 40‐unit GENCO can be solved to optimality by Gurobi,
and (iii) all scenarios tested with the MIQP model R‐PBUC‐
DDU could be solved to optimality within 1 h. Based on
Table 4, which illustrates the average objective values,

F I GURE 4 The optimal hourly schedule of generating units owned and operated by the 12‐unit GENCO
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computational times, and the optimality gaps over 5 scenarios
in each GENCO for Study II, it is obvious that the suggested
MIQP model R‐PBUC‐DDU could always be solved to
optimality quicker than the MINLP model PBUC‐DDU (e.g.,
0.078 s vs. 0.7 s in the 3‐unit GENCO, 7.94 s vs. 559.29 s in
the 12‐unit GENCO, and 3.28 s vs. 605.665 s in the 19‐unit
GENCO).

Therefore, our analyses over all the scenarios in the four
GENCOs demonstrate that finding the optimal solution and

proving its optimality with the convex reformulated MIQP
model R‐PBUC‐DDU is significantly faster.

6 | CONCLUSIONS

This study proposed a new PBUC model to maximise the
GENCOs' profits, which effectively takes into account the
decision‐dependent sources of uncertainty in the decision‐

TABLE 1 The optimal hourly schedule of the system generating units owned and operated by the 19‐unit GENCO: Case I

Unit Hours (1–12)

g1‐g4 1 1 1 1 1 1 1 1 1 1 1 1

g5 0 0 0 0 0 0 0 0 0 0 0 0

g6 1 1 0 0 0 0 1 1 1 1 1 1

g7–g17 1 1 1 1 1 1 1 1 1 1 1 1

g18 0 0 0 0 0 0 0 0 0 0 0 0

g19 1 1 0 0 0 0 1 1 1 1 1 1

Case I Unit Hours (13–24)

g1‐g4 1 1 1 1 1 1 1 1 1 1 1 1

g5 0 0 0 0 0 0 0 0 0 0 0 0

g6 1 1 1 1 1 1 1 1 1 1 1 1

g7–g17 1 1 1 1 1 1 1 1 1 1 1 1

g18 0 0 0 0 0 0 0 0 0 0 0 0

g19 1 1 1 1 1 1 1 1 1 1 1 1

TABLE 2 The optimal hourly schedule of the system generating units owned and operated by the 19‐unit GENCO: Case II

Unit Hours (1–12)

g1‐g4 1 1 1 1 1 1 1 1 1 1 1 1

g5 0 0 0 0 0 0 0 0 0 0 0 0

g6 1 1 0 0 0 0 1 1 1 1 1 1

g7–g17 1 1 1 1 1 1 1 1 1 1 1 1

g18 0 0 0 0 0 0 0 0 0 0 0 0

g19 1 1 0 0 0 0 1 1 1 1 1 1

Case II Unit Hours (13–24)

g1‐g4 1 1 1 1 1 1 1 1 1 1 1 1

g5 0 0 0 0 0 0 0 0 0 0 0 0

g6 1 1 1 1 1 1 1 1 1 1 1 1

g7–g17 1 1 1 1 1 1 1 1 1 1 1 1

g18 0 0 0 0 0 0 0 0 0 0 0 0

g19 1 1 1 1 1 1 1 1 1 1 1 1
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making process.We defined the elastic portion of demand,which
depends on the price for the elastic demand (a decision variable
in the PBUC optimisation), as the decision‐dependent source of
uncertainty, that is, DDU. The proposed problem takes the form
of an MINLP optimisation model. A computationally efficient
concavification approach was designed to reformulate it as an
equivalent convex MIQP formulation, which could be solved
faster and more efficiently. Extensive numerical results on four
different GENCOs clearly highlighted the effectiveness of the
proposed PBUC model computationally and in increasing the
GENCOs' profits when compared to the state‐of‐the‐art PBUC
models where DDUs are not incorporated. Future research
could investigate different forms of non‐linear relationships
between the elastic demand and its corresponding price

(e.g., [41], [61–63]) in the proposed PBUC model with endoge-
nous uncertainty.

DATA AVAILABILITY STATEMENT
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from the corresponding author upon reasonable request.

NOMENCLATURE
SETS AND INDICES
g ∈ G Index and set of generating units
t; k ∈ T Index and set of time periods

PARAMETERS AND CONSTANTS
ag Coefficient of the quadratic term for the power

generation cost of generating unit g [$/MW2].
bg Coefficient of the linear term for the power genera-

tion cost of generating unit g [$/MW].
cg Fixed cost term of generating unit g [$].
Cu
g Start‐up cost of generating unit g [$/MW].

Cd
g Shut‐down cost of generating unit g [$/MW].

Mþg Maximum sustained ramp rate of generating unit g
[MW].

M−
g Maximum quick start capacity of generating unit g

[MW].
Pg
‾
; Pg

‾
Minimum and maximum power capacity of gener-
ating unit g [MW].

αþg ; α−
g Ramp‐up and ramp‐down rate of generating unit g

[MW].
βþg ; β

−
g Start‐up and shut‐down limit of generating unit g

[MW].
τþg ; τ−

g Minimum up‐time and down‐time of generating unit
g [h].

δt Price for the fixed demand at time t [$/MW].

TABLE 3 Proportion of scenarios solved to the optimality tolerance
level in different GENCOs

GENCO PBUC‐DDU R‐PBUC‐DDU
Types Baron Gurobi Gurobi

Study I

3‐Unit GENCO 0 100% 100%

12‐Unit GENCO 0 80% 100%

19‐Unit GENCO 0 100% 100%

40‐Unit GENCO 0 0 100%

Study II

3‐Unit GENCO 0 100% 100%

12‐Unit GENCO 0 100% 100%

19‐Unit GENCO 0 100% 100%

40‐Unit GENCO 0 0 100%

TABLE 4 Performance comparison of the proposed mixed‐integer non‐linear programming and mixed‐integer quadratic programming models in
different GENCOs

GENCO types

PBUC‐DDU R‐PBUC‐DDU

Objective value ($)
Computational
time (s)

Optimality gap
(%) Objective value ($) Computational time (s)

Baron Gurobi Baron Gurobi Baron Gurobi Gurobi Gurobi

Study I

3‐Unit GENCO 154,191.6 154,191.2 3600 0.1912 0.832 0.00064 154,191.6 0.03125

12‐Unit GENCO 1,917,730 1,917,729.2 3600 761.994 1.16 0.00216 1,917,729.4 0.95

19‐Unit GENCO 3,125,098 3,125,124 3600 274.75 0.76 0.00084 3,125,124 24.525

40‐Unit GENCO 1,031,038 1,031,004 3600 3600 4.05 0.061 1,031,344 833.185

Study II

3‐Unit GENCO 171,742.4 172,080.4 3600 0.7 1.13 0.0009 172,080.4 0.078

12‐Unit GENCO 1,911,648 1,924,114 3600 559.29 2.04 0.0009 1,924,114 7.94

19‐Unit GENCO 3,646,928 3,646,924 3600 605.665 1.23 0.001 3,646,924 3.28

40‐Unit GENCO 1,052,848 1,053,350 3600 3600 2.8 0.564 1,053,432 1850.17

Abbreviations: DDU, decision‐dependent uncertainty; PBUC, profit‐based unit commitment.
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ρst Market price for spinning reserve at time t [$/MW].
ρnt Market price for non‐spinning reserve at time t

[$/MW].
Df
t Amount of fixed demand at time t [MW].

De
t Maximum acceptable amount of the elastic demand

at time t [MW].
Me Maximum acceptable price for the elastic demand by

customers [$/MW].
Ke Slope of the elastic demand curve [$/MW2].
R Ratio for reserve requirement.

DECISION VARIABLES
λg;t Total generated power including spinning and non‐

spinning reserve of generating unit g at time t [MW].
nþg;t Non‐spinning reserve of generating unit g when online at

time t [MW].
n−
g;t Non‐spinning reserve of generating unit g when offline

at time t [MW].
pg;t Output active power of generating unit g at time t [MW].
rsg;t Spinning reserve of generating unit g at time t [MW].
rng;t Non‐spinning reserve of generating unit g at time t

[MW].
xg;t Binary variable for the schedule of generating units: = 1

if generating unit g is on‐line at time t, = 0 otherwise.
hg;t Binary variable for non‐spinning supply of off‐line

generating units: = 1 if generating unit g supplies non‐
spinning reserve when off‐line at time t, = 0 otherwise.

yg;t Binary variable for start‐up status of generating units: = 1
if generating unit g starts up at time t, = 0 otherwise.

zg;t Binary variable for shut‐down status of generating units:
= 1 if generating unit g shuts down at time t, 0 otherwise.

p fg;t Generation output of generating unit g at time t to
supply the fixed demand [MW].

peg;t Generation output of generating unit g at time t to
supply the elastic demand [MW].

det Quantity of elastic demand at time t [MW].
πet Price for the elastic demand at time t [$/MW].

ORCID
Payman Dehghanian https://orcid.org/0000-0003-2237-
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