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a b s t r a c t

Maintaining a desirable energy and voltage profile in large-scale power distribution systems has been
remained a challenging concern particularly due to the rushing arrival of uncertainties and high pro-
liferation of intermittent renewables. This challenge has been exacerbated by an increased interest in the
adoption of highly-uncertain electric vehicle (EV) loads as distributed energy storage (DES) devices since
the owners' attitudes and EV's charging and discharging patterns are radically random. In this paper, in
addition to the stochastic modeling of the random behavior of EV's charging patterns, EVs' charging
statuses are optimally coordinated to support the control of voltage and energy in the system with the
adaptive deployment of controllable loads. Moreover, fast and normal charging modes of EVs and the
corresponding charging and discharging challenges to the grid are investigated. Distinct scenarios of EVs-
only and EV-controllable loads are proposed and investigated through solving an optimization problem.
In doing so, improved mixed real and binary vector-based swarm optimization algorithm is used to
optimize the distribution system's operation while addressing the impacts of EVs' coordination on en-
ergy and voltage control (EVC). The efficiency and applicability of the proposed algorithm are tested and
verified on the IEEE 69-bus and 119-bus test systems.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivations and problem statement

Electric power transmission and distribution systems are
becoming drastically inductive due to the augmented presence of
small, medium and large scale inductive loads such as electronic
devices, controllable loads, household appliances, etc. This calls for
advanced mechanisms to be deployed in order to maintain and
increase the effective utilization of reactive power resources in the
evolving power grids. The necessity of such mechanisms becomes
more serious in the case of augmented penetration of renewable
sources as they affect power quality parameters [1,2]. Series and
shunt capacitors are the main passive elements supporting the
(M.H. Hemmatpour), mh_
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reactive power requirements in electricity grids. Series capacitors
typically support the line reactance while the shunts locally
compensate the system reactive power loss by changing the load
phase angle which, in turn, results in improvements in power
factor, voltage profiles, and network loadability. Since many loads
in power grids are attributed with a leading power factor, the shunt
capacitors are widely employed to compensate the out-of-phase
current factor needed for inductive loads [3].

Deployment and integration of Electric vehicles (EVs) for urban
transportation has seen a widespread rise in the past decade, with
potentials to keep growing drastically. EVs may be interpreted as an
energy storage resource that can be connected to the electric
network and provide the desired electrical energy to the power grid
and/or customers. Moreover, two third of the oil consumptions is
currently used in transportation systems in which 97% of the en-
ergy belongs to the fossil fuels. While EVs facilitate an electrified
mobility in modern power grids offering lots of flexibility and
supportive benefits locally and grid-scale, there are few challenges
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Nomenclature

ECost cost of consumed energy
VDCost cost of voltage deviation
SCCost cost of shunt capacitor switching
TCCost cost of transformer tap changing
Ep (Eq) total daily active (reactive) energy consumption
lp (lq) cost of active (reactive) power per kWh (kVAr)
vi;h voltage at bus i at the hth hour
PDi;h active power consumed at bus i at the hth hour
CV penalty applied constantly or linearly in case the

voltage value exceeds Vmin or Vmax

VT
maxðVT

minÞ thresholds for the maximum (minimum) voltage
magnitudes

PNðtÞðQNðtÞÞ active (reactive) powers injected from the
upstream network to the distribution grid at time t

PblossðtÞðQb
lossðtÞÞ active and reactive power losses of branches

PiLðtÞðQi
LðtÞÞ active and reactive loads at bus i

PjEV ðtÞ active power consumed by or injected from the jth EV
in the sth parking lot

Dj
EV charging/discharging status of the jth EV

NbusðNbrÞ number of buses (branches) in the system
NCS number of parking lots

NEV ;S number of EVs in the sth parking lot at time t
Ui
LðtÞ amount of power supplied by the controllable load at

bus i
h EV's battery efficiency
MPBi maximum power of the battery of the ith EV

delivered to the grid, which
NC
EV ;S (ND

EV ;S) number of EVs that are being charged
(discharged) in the sth parking lot at time t

Ns
DðtÞðNs

CðtÞÞ number of EVs in the discharging (charging) modes
at time t

Ns
EV ðtÞ total number of EVs at time t at the sth parking lot

Ns
NCðtÞ number of EVs that are in the normal mode at time t

at the sth parking lot
Ns
FCðtÞ number of EVs that are in the fast charging mode at

time t at the sth parking lot
Ssmax thermal limit of the line connecting the sth parking

lot to the grid
SsLðtÞ apparent power provided by the sth parking lot
Qs
LðtÞ line reactive power flowing through the line

connecting the sth parking lot to the grid
CSi status of ith capacitor
TapStatus number of transformer tap
UL amount of controllable load
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concerning the widespread deployment of EVs, among which are
the significant randomness in driving patterns and the re-charging
capacities. EVs are targeted as the emerging large loads in power
grids; different from the conventional loads, EVs are able to func-
tion as both energy storage resource and a distributed energy unit
that, at times and if necessary, can support the power distribution
grid stability, reliability, and resilience [4].
1.2. Literature review

Voltage and active/reactive power control strategies can be
generally categorized into centralized and decentralized clusters. In
the first category, widespread data communications across the
network to a central station is needed for controlling voltage and
active/reactive power in the system. Examples of significant studies
in the related literature are as follows. To address the influence of
high penetration of renewable energy sources integrated into active
distribution networks, a distributionally robust chance constraint
model considering discrete reactive power compensators is pro-
posed in [5]. A classification of DERs into four reactive power cate-
gories: Type P-RQ, Type P-IQ, Type P-CQ and Type PeV-Q, based on
their reactive power characteristics is proposed in [6]. A centralized
nonintrusive voltage and reactive power control strategy for distri-
bution systems is developed in [7], where the photovoltaic inverter
control with the reactive power fed by PVs were employed to
cooperate with a nine-zone diagram control. A multi-control
vehicle-to-grid charger is proposed in [8] that can perform vehicle
battery charging and discharging operations, as well as reactive
power compensation, power factor correction, and grid voltage
regulation. On the other hand, in the second category the decen-
tralized algorithms are placed which are centered on the local data
acquisition and are characterized with a faster response. For
example, a decentralized short-term control strategy for active po-
wer control in distribution systems is proposed in [9]. A decentral-
ized coordinated voltage control scheme for VSC HVDC-connected
wind farms is suggested in [10] where a model predictive control
(MPC)-based voltage control optimization is first formulated for
wind farms and then solved in a decentralized manner using the
2

alternating directionmethod ofmultipliers. Authors in [11] proposed
a novel decentralized coordinated voltage control scheme for a
distribution system consisting of DCmicrogrid, doubly fed induction
generator based wind system, on-load tap changer and DSTATCOM.

According to the Energy Information Administration (EIA) report
on November 2017, the number of EVs in 2015 is estimated as 1.2
million which is accounted for 1% of the total automotive vehicles
[12]. Therefore, it is essential to investigate and analyze the re-
quirements and impacts of EVs on different aspects of electrical
grids. As an example, in [13] authors have studied the operation
economy and power quality of distribution systems subject to the
fluctuating and stochastic power outputs of distributed generation
(DG) units and electric vehicles using a multi objective optimization
model for network reconfiguration. In another work presented in
[14] authors intended to establish an effective coordination between
high penetration of plug in electric vehicles (PEVs) and optimal
operation management of distribution network. To do that, they
proposed an effective fuzzy logic controller, which focuses on co-
ordinated smart charge/discharge control of high penetration of
PEVs with optimal operation management in an iterative optimi-
zation process. A methodology for assisting electricity distribution
companies in identifying candidate connection points for fast
charging stations to reduce new installations and network rein-
forcement investments are other issues investigated in [15]. The
routing of an EVwithmaximum efficiency relative to the terrain has
been investigated in [16]. Authors in [17] studied the demand
response programs and smart charging/discharging of plug-in
electric vehicles for improving the reliability of radial distribution
systems adopting particle swarm optimization algorithm. The
challenge of the large-scale construction of fast charging stations for
EVs in order to determine the optimal planning, especially the siting
and sizing of these stations in the electrical distribution system is
studied in [18]. Authors in [19] proposed an optimization model to
jointly deploy electric vehicle charging stations and distributed
generation resources, during which the vehicle-to-grid function of
electric vehicles is comprehensively considered. A coordinated
charging scheduling method for EVs in microgrid to shift load de-
mand from peak period to valley period is defined in [20]. The
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purpose of [21] is to evaluate a hybrid DC fast charging station with
the aim of reducing peak demand during charging periods. A smart
charging management system considering the elastic response of
electric vehicle users to electricity charging price is proposed in [22].
A novel location planning method of fast charging stations, in order
to achieve the overall optimization of operators, drivers, vehicles,
traffic condition, and power grid is considered in [23].

1.3. Contribution

With the increasing growth in the deployment and integration
of EVs and controllable loads into the grid, the created challenges
and their unique characteristics need to be further researched. In
this context, one of the main challenges is the energy and Voltage
Control (EVC). A survey on the related literature shows that there
are few studies in this field demonstrating the broad impact of EVs
on voltage control and energy consumption in power distribution
grids [14]. Therefore, in this paper, the impact of presence of EVs
and their coordinated charging on voltage control of distribution
system as an important issuewill be examined. In doing so, we have
addressed, analyzed, and compared the impact of EVs and
controllable loads on the EVC practices in power distribution sys-
tems through multiple scenarios. The solution of our analyses are
obtained through applying an improved mixed real and binary
vector-based swarm optimization (IMVBSO) algorithm to an opti-
mization problem defined in this paper. This optimization problem
is defined so that, by optimal adjusting of transformers and ca-
pacitors, the low-cost daily operation of distribution grid from a
technical point of view is assured. Briefly speaking, the main con-
tributions of the paper are highlighted as follows:

� The paper proposes a solution to evaluate the impact of EVs and
controllable loads on the EVC performance in power distribu-
tion systems.

� Different from the past literature, both regular and fast charging
scenarios, as well as thermal limitation impacts on the EVC
performance are addressed and investigated in the proposed
methodology in order to accommodate the obtained solution to
the reality of distribution systems as much as practical.

� The optimization model is designed such that the statues of
capacitor switches and transformer taps can be optimally
selected taking into account the minimization of the operation
cost. The operation cost contains costs related to the energy
consumption, voltage deviation, capacitor switches and trans-
former tap changing actions.
Fig. 1. A 7-bus distribution system integrated with EVs.
1.4. Paper organization

The rest of the paper is organized as follows. A background on
the challenges around the EV penetration into modern active po-
wer distribution grids and the concept of controllable loads are
introduced and discussed in Section 2. The suggested model for
energy and voltage control in distribution systems, the proposed
optimization formulation as well as the coordinated charging
procedure of EVs are introduced in Section 3. Section 4 introduces
IMVBSO algorithm as the solver of the proposed optimization
problem. Simulations and numerical analysis are elaborated in
Section 5, and finally come the conclusions in Section 6.

2. Background on EVs and controllable loads

2.1. Electric vehicle proliferation and challenging concerns

With the rushing arrival of EVs into the electric vehicle charging
3

discharging stations, the electric industry has realized the need for
advanced mechanisms to address the impact of variable EV loads in
the power grid operationdincluding the impacts on EVCdand
electricity markets. The random EV charging and discharging pat-
terns are primarily originated from the stochasticity in the fre-
quency of EVs visiting the parking lots and in the EV's level of
charges. A simple 7-bus distribution system is illustrated in Fig. 1 to
realize the impact of EVs on energy and voltage control. Assuming
an EV is charged at bus 5, the active and reactive power con-
sumption increase and the bus voltage decreases. Thus, the trans-
former tap as well as the number of capacitor switching will
increase in order to improve the voltage profile and decrease the
reactive power consumption. The conditions are reversely observed
in situations where the EVs discharge. It is noteworthy that if EVs in
the charging mode request power from the grid that is beyond the
thermal threshold of the connected line, the network cannot supply
this power request. In such circumstances, EVs in fast-charging
modes should first change the mode to the normal-charging until
the thermal threshold of the connected line gets within its normal
limit. If all the EVs in fast-charging mode are changed to normal
charging modes and the challenge still remains, the solution would
be to reduce the maximum SOC of the EVs. This usually takes place
within the fast-charging mode of EVs which takes more power off
the grid in a short time interval. If the EVs are in discharging mode
and the line connected to the lot is not capable of transmitting the
injected power from EVs to the grid, the grid then faces EV Power
Spillage (EVPS) issue. To overcome this, some EVs need to be placed
in queue to transfer their power in the next few hours until the
congestion is cleared.
2.2. Controllable loads in power grids

Controllable loads are categorized into two groups [24]:
Controllable Loads-Type I: Represent the loads that are consid-

ered passive and not able to inject power to the grid. Some resi-
dential and industrial loads are placed in this category. They are, at
times, managed so as to eliminate them from the electric grid or
time-shifted. Such controllable loads are extensively studied in this
paper where the contributions to EVC is investigated. Controllable
loads-Type I are commonly referred to as “controllable loads” in
this paper.

Controllable Loads-Type II: Such controllable loads can be
charged (consuming the electric power from the grid) or dis-
charged (injecting electric power to the grid). Among such loads are
batteries, EVs, as well as the combined heat and power systems.
These controllable loads are attributed a high level of flexibility to
support the loads and are introduced as the “active controllable
loads” in the power grid. However, in this paper, EVs and their
impacts have been considered separately from controllable loads.
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3. Proposed optimization problem for EVC

The increase in demanding for more reliable electricity in
modern distribution systems with heterogeneous smart devices
engenders an escalated reactive power loss which in turn rises the
voltage drops on the demand side. Strategies based on the optimal
capacitor bank (CB) switching together with transformer load tap
changing (LTC) are among the effective practices in electric industry
to minimize the costs associated with energy consumption and
voltage deviation at buses. However, due to the time-varying na-
ture of loads, the CB switching and LTC implementations should
closely follow the load variability and stochasticity to ensure an
optimal and low-cost solution. To achieve this goal, this paper
proposes an optimization formulation for the centralized EVC with
massive penetration of EVs in active distribution systems.

3.1. Load level modeling

A typical daily load level in a distribution grid with a time step of
1 h is presented in Fig. 2. To achieve this 24-h load profile, the 12-
month load profile is borrowed from [25] in which the monthly
data encapsulates the daily average load profile during a given
month. In this paper, the average load data is extracted and taken as
the daily load profile.

3.2. Problem formulation

A multi-objective optimization problem with four objective
functions is proposed to simultaneously minimize the operation
cost as follows.

OF ¼ ECost þ TCCost þ SCCost þ VDCost (1)

where ECost is the cost of consumed energy; VDCost is the cost of
voltage deviations; SCCost is the cost of shunt capacitor switching;
and TCCost is the cost of transformer tap changing. The cost for
regulating the transformer tap is found by using the total cost
including the capital cost and the maintenance cost over the
maximum allowed regulation times over the lifetime. In the opti-
mization framework, it will be converted to the cost peroff-nominal
ratio. The cost of switching a shunt capacitor is found similar to the
transformer tap cost, which is finally converted to themonetary per
MVar [26], while the cost of energy consumption is calculated as
follows.

ECost ¼ lpEp þ lqEq (2)

where, Ep (Eq) denotes the total daily active (reactive) energy
consumption, and lp (lq) is the cost of active (reactive) power per
Fig. 2. The daily time-varying load profile.
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kWh (kVAr) [26]. Finally, to calculate the cost raised due to voltage
deviation at buses, (3) will be used [27].

VDCost ¼
X
h2H

X
i2N

PDi;hUC
VD
i;h (3)

where

UCVD
i;h ¼

8>>>>>>>>>><
>>>>>>>>>>:

0 if Vmin < vi;h <Vmax

CV
VLL
max � Vmax

�
vi;h � Vmax

�
if Vmax < vi;h <VLL

max

CV
Vmin � VLL

min

�
Vmin � vi;h

�
if VLL

min < vi;h <Vmin

CV otherwise

(4)

In (3) and (4), vi;h and PDi;h are the voltage and the active power

consumed at bus i both at the hth hour, while CV is a penalty
applied constantly or linearly in case the voltage value exceeds Vmin
or Vmax. As it can be seen from (4), when themagnitude of voltage is
between 0.95 pu (Vmin) and 1.05 pu (Vmax), no cost will exist. VT

min

and VT
max are the thresholds for the maximum and minimum

voltage magnitudes, respectively.
One main constraint in distribution systems relates to the active

and reactive power flow through the system. In other words, as
defined in (5), active and reactive power supply in the whole sys-
tem must be assured:

PNðtÞ¼
XNbus

i¼1

Ui
LðtÞPiLðtÞ þ

XNCS

s¼1

XNEV ;S

j¼1

Dj
EV ðtÞP

j
EV ðtÞ þ

XNbr

b¼1

PblossðtÞ

(5.a)

QNðtÞ¼
XNbus

i¼1

Ui
LðtÞQi

LðtÞ þ
XNbr

b¼1

Qb
lossðtÞ (5.b)

where, PNðtÞ and QNðtÞ are the active and reactive powers injected
from the upstream network to the distribution grid at time t, which
are always injected through bus 1. Moreover, PblossðtÞ and Qb

lossðtÞ are
the active and reactive power losses of branches, PiLðtÞ and Qi

LðtÞ are
the active and reactive loads at bus i, and PjEV ðtÞ is the active power

consumed by or injected from the jth EV in the sth parking lot. Dj
EV

defines the charging/discharging status of the jth EV. When the EV

is in its charging and discharging mode, Dj
EV is equal to 1 and -1,

respectively. In addition, Nbus is the number of buses in the system,
Nbr is the number of branches, NCS is the number of parking lots,
and NEV ;S is the number of EVs in the sth parking lot at time t.

Ui
LðtÞ determines the amount of power supplied by the

controllable load at bus i, and takes a value as follows.

Umin
L �Ui

LðtÞ � Umax
L (6)

Since the maximum controllable load at each bus is assumed
here to be 20%, we will have: Umin

L ¼ 0:8; Umax
L ¼ 1.
3.3. Coordinating EVs charging in parking lots

In amodern public parking lot, a part of parking area is equipped
with chargers to be used by EVs during their parking period (see
Fig. 3). During the day and night, both EVs and fuel cars enter and
leave the parking lot. As it can be seen from Fig. 3, fuel cars as well



Fig. 3. Schematic of a parking lot with EV chargers.
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as EVs which does not wish to be charged are parked in parking
spaces without chargers. In working hours of the day, many people
use their EVs to go to work, and they need to park their cars near to
their work places. In this regard, if the power in batteries of their
cars are low, car owners prefer their cars to be charged during the
parking time period. Accordingly, the EV entering a parking lot for
charging/discharging is characterized with three characteristics as
follows:

- Its tendency for discharging or charging (fast or normal).
- Its desirable time to stay in the parking lot.
- Its level of charge at the time of arrival.

The above characteristics must be considered in the optimiza-
tion problem in order to achieve amore practical solution regarding
the real electrical behavior of parking lots.

Technically speaking, each EV will receive some active power
from the grid when in the charging mode, while it delivers active
power to the grid when in the discharging state, as follows.

PiEV ¼

8><
>:

Di
EV* MPBi

hi
if EV is in the charging mode

Di
EV* MPBi* hi if EV is in the discharging mode

(7)

where h denotes the EV's battery efficiency; MPBi reflects the
maximum power of the battery for the ith EV delivered to the grid,
which also indicates the nominal EV capacity. Equation (7) in-
dicates that considering the battery efficiency, more power should
be supplied by grid during the charging mode to have the battery
charged. Accordingly, during the discharging mode, the EV injects
less power to the grid [28]. A parking lot is assumed to have NS

charging stations. In order to simplify the analysis and without loss
5

of generality, it is assumed that the EVs located in the parking lots
can operate in two different states: (i) the EV is fully charged and
can transfer power to the electric grid, (ii) the EV is depleted and
needs to be re-charged. Usually, two EV charging modes (normal or
fast) are considered. It is also assumed that if all the stations in the
lot are occupied by EVs that are in normal charging mode, the
limitation of the line connecting the lot to the grid is not exceeded.
However, in case some of EVs are in fast charging mode, this lim-
itation would be exceeded. To mitigate this cases, it would be
necessary to determine the number of EVs that are allowed to be in
fast charging mode according to the charging and discharging
statuses of other EVs in the lot.

It is assumed that the EV arrives at the station at Tai and departs
at Tdi. This duration is called “parking time duration (PTD)”which is
assessed as PTD ¼ Tdi � Tai. Although PTD can follow a stochastic
distribution pattern, in order to simplify the analysis, it is assumed
in this paper that PTD for EVs that want to use the fast charging
mode is 2 h while EV owners who intend to charge their car in the
normal charging mode will stay in the lot for 8 h. During this time,
EVs can be charged or discharged with a constant power rate. Ac-
cording to the literature, a full discharging will takes about 4 h for
typical batteries, while an EV needs 20 min or 4 h to be charged in
the fast or normal charging modes, respectively [29]. Note that PTD
is a parameter dependent to the tendency of the EV owner and not
to the EV's battery type or the initial charge level. Therefore, since
the thermal and other limitations of the parking lot may not allow
the EVs to enter the charging stations right after entering the lot
and therefore EVs may be put in the queue, considering a parking
time hour of 2 h for EVS with fast charging tendency and 8 h for EVS
with normal charge tendency is necessary to let them become fully
charged.

In this paper, it is assumed that an EV can be charged in the fast
charging mode up to 10 times faster than its normal charging rate,
reflecting the fact that more power should be transferred to the EV
in a shorter time interval. This feature can be reflected using the
index. In so doing, the time duration that an EV remains in charge is
multiplied by TSiPEV which is defined in (8).

TSiPEV ¼
�
1 if charging status is normal
0:1 if charging status is fast

(8)

According to (8), if the EV is in the fast-charging mode, the
charging time would be 90% less and the receiving rate of power is
10 times higher. In general, the active power demanded by an EV

when charging at time t, i.e. PjEV ðtÞ, which is in kW, will be deter-
mined as follows:

PjEV ðtÞ¼

8><
>:

PjEV ;min if charging status is normal

PjEV ;max if charging status is fast
(9)

where
Pj
EV ;max

Pj
EV ;min

¼ 10. Therefore, for the sth parking lot where a part of

cars are being charged and some are being discharged at time t, the
total power (at time t) which is delivered to or demanded from the
grid by the charging lot is determined as follows.

PsLðtÞ¼
XNEV ;S

j¼1

Dj
EV ðtÞP

j
EV ðtÞ ¼

XNC
EV ;S

j¼1

PjEV ðtÞ �
XND
EV ;S

j¼1

PjEV ðtÞ (10)

where, NC
EV ;S (ND

EV ;S) is the number of EVs that are being charged

(discharged) in the sth parking lot at time t. If PsL >0, it shows that
the power flow is from the grid to the lot, whereas PsL <0 indicates



Fig. 4. Flowchart of the proposed optimization algorithm.
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the power is injected to the grid. Considering the thermal limitation
of the line connecting the parking lot to the grid, this constraint
needs to be addressed to examine the grid ability for transferring
power to EVs. This limitation most likely to appear in the EV fast-
charging mode where EVs take more power at time t from the
grid. The thermal constraint is formulated in 11(a)-(d) as follows:

SsLðtÞ� Ssmax ct2f1;2;3; ‥‥; Tg (11.a)

SsLðtÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0
@ XNs

FCðtÞ

i¼1

rmax
i þ

XNs
NCðtÞ

i¼1

rmin
i �

XNs
DðtÞ

i¼1

rmin
i

1
A

2

þ �
Qs

LðtÞ
�2

vuuut

(11.b)

Ns
FCðtÞþNs

NCðtÞ ¼ Ns
CðtÞ (11.c)

Ns
CðtÞþNs

DðtÞ ¼ Ns
EV ðtÞ (11.d)

where, Ns
DðtÞ and Ns

CðtÞ are the number of EVs in the charging and
discharging modes at time t, respectively, Ns

EV ðtÞ, Ns
NCðtÞ and Ns

FCðtÞ
are the total number of EVs, the number of EVs that are in the
normal mode, and the number of EVs that are in the fast charging
mode, respectively, all at time t at the sth parking lot. Ssmax denotes
the thermal limit of the line connecting the sth parking lot to the
grid. SsLðtÞ represents the apparent power provided by the sth
parking lot. Qs

LðtÞ indicates the line reactive power flowing through
the line connecting the sth parking lot to the grid.

In this study, EVs arrive at the parking lot and will wait in a
queue. Therefore, the priority list of cars is obtained according the
time of arrival of each EV at the lot. It is assumed that the number of
cars that arrive at the lot as well as their tendency to be charged
(fast or normal) or discharged follow random distributions. Ac-
cording to the above charging preferences and charging priorities, a
charging coordinating scheme can be established in a parking lot as
follows.

- Every 20 min, the parking lot is checked for unoccupied
charging stations. If there is any, the car in the first place in the
priority list will go to the charging station if it is intended to be
discharged.

- In case the car wants to be charged fast, it must be checked
whether the thermal limit of the line connecting the lot to the
grid allows for fast charging. If the answer is yes, the car can go
to the charging station for charging, otherwise it should wait for
another 20 min and then the next car in the priority list with a
normal charging preference will be summoned.

4. Using IMVBSO to solve the problem

Fig. 4 illustrates the flowchart for the proposed optimization
problem. According to Fig. 4, the number of EVs in each parking lot
is determined at first using a normal probability distribution
function. The number of vehicles with the charging or discharging
status will be evaluated. Then, the normal and fast charging sta-
tuses of EVs will be determined. The thermal limitation and EVPS
conditions will be then checked. If the distribution line is not
capable of power delivery, the number of charging and discharging
EVs must be amended. In case of having thermal limitation viola-
tions, it is necessary to limit the number of fast charging EVs so that
the EVs that desire to be normally charged get priority.

In order to solve the proposed optimization problem, the
IMVBSO is utilized in this paper due to its capability to solve an
optimization problem with objective function as those defined in
6

(3) which is a cost function of four objectives.
The IMVBSO is the evolved version of the Particle Swarm Opti-

mization (PSO) and the Differential Evolutionary (DE) algorithms
where the population explorer is characterized in the form of a
vector. In this paper, an IMVBSO algorithm is utilized to maintain
the EVC in active distribution systems with massive penetration of
EVs. The steps of this algorithm are explained in [26]. However, a
summery these steps is given below:

Step 1: formation of the initial population. The initial population
vector are similar to the final solution defined in (12)-(14) with the
objective function (OF) excluded.

Step 2: merit functions in vector optimization. In this step, the
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fitness of each vector is evaluated based on the objectivefunction
introduced in (1).

Step 3: population updating based on merit functions. Using the
IMVBSO algorithm, the new vectors are calculatedthrough the
following four stages: reproduction, mutation, boundary check, and
selection. Reproduction combines several vectors to determine the
best information and can be categorized into a direct cooperation
vector and differential cooperation vector to control the explora-
tion and searches.

Step 4: termination condition. With a precision of 0.01, the so-
lutions of the objective function in two consecutive iterations are
the same. If the termination condition is not satisfied, this process
will be iterated from Step 2.

In the proposed IMVBSO algorithm, the format of the solution in
scenarios 2 and 3 is a matrix containing the values of decision
variables together with the value of the objective function for a 24-
h time frame as follows.

SM¼ ½ sm1 sm2 … sm24 �T (12)

where

sm¼ ½CS1 … CSn TapStatus OF � (13)

In (13), CSi is the status of ith capacitor which is a binary value
(zero for a disconnected capacitor and unity value for a connected
capacitor), TapStatus is defined as the number of transformer tap, and
OF is the objective function. The objective functions is the operation
cost, which is explained in (1). Note that in the fourth scenario CL ¼
1� UL inwhich UL is defined as the amount of controllable load will
be added to sm as follows.

sm¼ ½CS1 … CSn TapStatus CL OF � (14)

It is worthy to note that in each iteration the population is
generated representing the settings of the CB Switching State and
the Transformer Tap State. This population structure offers an
inherent flexibility such that all CBs can be either connected to or
disconnected from the network, which, as stated, is enforced by a
binary variable that can take either 0 or 1 (0: disconnection; 1:
connection).

5. Case studies and numerical results

5.1. Model assumptions and test cases description

In this paper, the proposed approach is tested on the IEEE 69-
bus test system with 7 laterals (see Fig. 5 for the one-line dia-
gram) and the IEEE 119-bus test system. The total active (reactive)
power in these systems are 3801.5 kW (2694.6 kVAr) and
22709.7 kW (17041.1 kVAr), respectively. In the former case, we
assume that 10 three-phase shunt capacitors of 300 kVAr are
located at nodes 9, 19, 31, 37, 40, 47, 52, 55, 57, and 65 which can be
connected to and disconnected from the network [30]. In the latter
case study, 10 three-phase shunt capacitors of 1000 kVAr are
located at nodes 8,12, 33, 36, 40, 36, 75, 79, 99 and 118which can be
connected to and disconnected from the network [31]. A trans-
former with three tap ratio of ±0:02 p.u. is located in the upper
node to maintain the node voltage level within the desirable in-
terval of [0.94,1.06] p. u. in both networks [31]. The transformer tap
is assumed to be 0.02with at most three tap changes corresponding
to the ±3 level of voltage drop or rise of 0.94 p. u. and 1.06 p. u,
respectively.

In calculating the cost function in (1) it is assumed in this paper
that, SCCost and TCCost are 0.133 $/MVar and 1.33 $/tap respectively,
whereas VLL

min , VLL
max and CV are assumed to be 0.8 pu, 1.2 pu and 3.4
7

$/kWh, respectively [27]. Moreover, according to [26], the values of
lp and lq are set on 0.06 $/kWh and 0.02 $/kVArh, respectively.

Four scenarios have been applied to analyze the EVC in the grid:
(a) Scenario 1: base-case condition; (b) Scenario 2: operation cost
assessment considering the daily load profile in the absence of EVs;
(c) Scenario 3: operation cost assessment taking into account both
daily load profile and EVs charging behavior; (d) Scenario 4: oper-
ation cost assessment in the presence of controllable loads and EVs.

In the first scenario, the proposed optimization algorithm is not
applied, so its results will be compared with other scenarios to
make it possible to prove the effectiveness of proposed algorithm
applied in the rest of scenarios. The second scenario is designed to
evaluate the effects of the 24 h planning of transformer tap
changing and capacitors switching on the operation cost. The aim
in the third scenario is to evaluate the presence of EVs with their
stochastic natures on the objectives of the optimization problem
considering the 24 h planning of transformer tap changing and
capacitors switching. In the fourth scenario, controllable loads are
entered into the optimization problem to show how they can
effectively play a positive role in minimizing transformer tap
changing actions and the number of capacitors switching.

It is worthy to note that, as explained in Section 4, in scenarios 2
and 3, the format of the solution in the IMVBSO matrix is a matrix
containing the values of decision variables together with the value
of the objective function. Therefore, as 10 capacitors are assumed to
exist in both 69 and 119-bus systems, there would be 10 decision
variables in sm associated with the capacitors along with one var-
iable associated with the tap of the transformer and another
element in the vector associated to the value of the objective
function (see Eq. (15)).

sm¼ ½CS1 … CS10 TapStatus OF � (15)

Also the format of sm in the fourth scenario will be as in (16).

sm¼ ½CS1 … CS10 TapStatus CL OF � (16)

5.2. Case study 1: IEEE 69-bus system

Scenario 1: Base-Case Condition.
The voltage profiles for various light, nominal and heavy load

levels shown in Fig. 2 are illustrated in Fig. 6. Note that, in all
simulations provided in this paper the daily load profile in Fig. 2 has
been used. According to Fig. 2, light and heavy load levels pertain to
the first and 12th hour of the time frame and are with values 0.73
and 1.25 of the nominal load, respectively. One can see from Fig. 6
that the load increment results in a higher voltage drop across the
system. Table 1 presents the active and reactive power losses, and
the cost value defined in (1) taking for the above load levels.
Moreover, the total cost for the whole 24-h time frame is obtained
as 42143.1 $. Note that in this scenario, SCCost and TCCost would be
zero.

Scenario 2: Voltage Control and Reactive Power Assessment
Considering the Daily Load Profile.

Implementing the proposed optimization problem discussed in
Section 3, the capacitors statuses and transformer tap states are
determined. To analyze the efficiency of the proposed algorithm,
the results in Scenario 1 and Scenario 2 under different loading
levels (light, nominal, and heavy) are compared as tabulated in
Table 2, where the consumed active and reactive powers are in
terms of kW and kVAr, respectively. Moreover, in order to better
validate the results and the efficiency of the proposed algorithm,
the problem defined in this scenario is solved using PSO as well. It
was found that the optimal solution obtained from PSO is similar to



Fig. 5. The one-line diagram of the IEEE 69-bus test system.

Fig. 6. The network voltage profile in the IEEE 69-bus test system: Scenario 1.

Table 1
Base results obtained for the IEEE 69-bus system (scenario 1).

Loading State Ploss (kW) Qloss (kVar) Cost ($)

Light 11.43 5.20 532.72
Nominal 20.89 10.22 1681.3
Heavy 36.91 16.71 3305.2

Fig. 7. Convergence characteristics of proposed IMVBSO and PSO algorithms (scenario
2).

M.H. Hemmatpour, M.H. Rezaeian Koochi, P. Dehghanian et al. Energy 239 (2022) 121880
the one obtained from IMVBSO. However, IMVBSO has better per-
formance in this example in terms of convergence speed. According
to Fig. 7, the convergence speed of the proposed IMVBSO algorithm
is faster than the PSO algorithm (IMVBSO converges in the fifty
iteration while PSO converges in the ninety iteration).

Note that in the fifth column of Table 2 Cost_E is used which
represents the value of cost function defined in (1) excluding the
cost of voltage deviations. According to Table 2, it can be seen that
in the first scenario a significant part of the operation cost pertains
to the cost of voltage deviations, which has been mitigated in the
second scenario due to the improvement in the voltage profile.
Table 2
EVC results obtained for the IEEE 69-bus system (scenarios 1 and 2).

Scenario Loading State Pconsumed (kW) Qconsum

S1 Light 2787.0 1972.3
Nominal 3824.6 2704.8
Heavy 4789.5 3385

S2 Light 2784.8 1471.3
Nominal 3821.0 2103.2
Heavy 4781.3 2381.2

8

Scenario 3: Voltage Control and Reactive Power Assessment
Considering both Daily Load Profiles and EVs.

In this scenario, the EVC in the presence of EVs is investigated. It
is assumed that there are a total of five parking lots with details
presented in Table 3 [28]. The last column in Table 3 represents the
thermal limitation of the line connecting each parking lot to the
grid. As one can realize, the parking lots 1, 2 and 4 have lower
thermal limitations and might impose a higher risks of charging
operation. Thus, the last column of this Table is somewhat a
reflection of the maximum number of EVs allowed to be charged in
the fast-charging mode.

The electric capacity of each EV is assumed to be 10 kW.
Moreover, the connection of EVs to the grid and their charging and
discharging statuses are randomly assigned and evaluated using
normal probability distributions. Fig. 8 illustrates the spatio-
temporal details of the EVs analyzed in this scenario. According
to the proposed approach, the number of EVs allowed for fast
charging is limited so that the thermal limit will not exceeded.
Another stochastic parameter is the level of EVs charge at the time
ed (kVAr) Cost_E ($) Cost_V ($) Cost_T ($)

206.7 326.1 532.7
283.6 1397.8 1681.3
355.1 2950.1 3305.2
196.5 0 196.5
334.5 167.3 271.3
271.3 0 334.5



Table 3
Details of parking lots in IEEE 69-bus test system.

Parking Lot # Bus # Capacity (charging stations) Thermal limit (kVA)

1 30 60 1455
2 32 100 5823
3 45 60 1455
4 48 60 1455
5 63 100 5823

Table 4
EVC results obtained for the IEEE 69-bus system (scenario 3).

Loading State Pconsumed (kW) Qconsumed (kVAr) Cost ($) CB# Tap #

Light 3045.2 970.1 202.1 8 þ2
Nominal 3838.1 1705.3 264.4 10 þ3
Heavy 4376.3 2381.5 310.2 9 þ3
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of arrival which is randomly selected among four values, i.e. 10 %,
20%, 30% and 40%.

Having obtained the information on the EVs at each parking lot
as illustrated in Table 3, the proposed IMVBSO optimization algo-
rithm is applied and the operation cost in the presence of EV loads
is analyzed. Table 4 displays the results observed in Scenario 3
under different loading conditions (light, nominal, and heavy).

While the results in Scenario 2 and Scenario 3 are found almost
similar in terms of the total cost, the number of switched shunt
capacitors and transformer tap changes are different. This obser-
vation is primarily supported by the dynamic nature of the EV's
charging and discharging actions, resulting in different capacitor
and transformer tap changing strategies. The proposed optimiza-
tion algorithm was proven to be able to reduce the randomness of
EVs by an additional number of transformer tap changing as well as
the flexibility in harnessing the capacitor banks.

Scenario 4: Voltage Control and Reactive Power Assessment
Considering Controllable and EV Loads.

In this scenario, the voltage control and reactive power analysis
in the presence of both EVs and controllable loads are investigated.
In this scenario, the load on bus 61 has been selected as the
controllable load. Thus, the control action is applied on this bus
where the active and reactive loads are 1244 kW and 888 kVar,
respectively. Note that the active and reactive load at bus 61 is one
third of the total load in the 69-bus test system meaning that the
control action in this bus is critical and has considerable impacts on
the loads and reactive power profile across the grid.

The parking lot dataset used in this scenario is the dataset
detailed in Table 3 and Fig. 8. Similar analytics, as presented in
Scenarios 1 to 3, are implemented in this scenario and the corre-
sponding results in different loading conditions are tabulated in
Table 5. Effective utilization of controllable loads together with EVs
would also result in a significant reduction in transformer tap
switching actions. During the studied 24-h time interval, the
transformer tap state would be set continuously constant in the
first positive tap state, which will increase the transformer life time
and reduce the maintenance and repair costs in a long run (see
Fig. 8. Number of EVs in each parking lot during the 24-h time frame (IEEE 69-bus
system).

9

Table 6).
One main observation in Scenario 4 is that the capacitor

switching actions are reduced to 2, which happened at hour 1 and
hour 22. Such advantages highlight the fact that utilizing the
controllable loads could reduce the operation cost. Comparing the
simulation results in Tables 4 and 5, one can realize that in all
loading conditions except one, the active/reactive power con-
sumption and the voltage deviation are improved. The reason lies
in the fact that the random behavior and stochasticity in EVs (un-
known charging and discharging status) are effectively compen-
sated in the grid by managing the controllable loads.
5.3. Case study 2: IEEE 119-bus distribution system

Scenario 1: Base-Case Condition.
Fig. 9 illustrates the voltage profile and Table VI summarizes the

power flow results under different loading levels for the 119-bus
system in the absence of capacitor banks and EVs.

Scenario 2: Voltage Control and Reactive Power Assessment
Considering the Daily Load Profile.

The results of this scenario is detailed in Table 7. It can be seen
that using IMVBSO for solving the proposed optimization problem
has resulted in reducing the total cost along with improving the
voltage profile. Particularly, the improvement in the voltage profile
has a significant impact on the total cost reduction. Compared to
the first scenario, the total cost has been reduced by 64.4%, 79.8%
and 75.3% for the light, normal and heavy loading conditions,
respectively.

One can clearly observe that the calculated consumed reactive
power varies from 10.74% to 13.94% by the proposed method as a
function of the problem in the network. In this scenario, the
transformer tap as well as the number of capacitor switching
increased as the load level rises (to maintain the voltage profile and
active and reactive power consumption within the limits). The
transformer tap increases from þ1 position to þ3 position and
accordingly, the number of CB switching actions increases from five
to six.

Scenario 3: Voltage Control and Reactive Power Assessment
Considering both EVs and Daily Load Profile.

In this scenario, it is assumed that there exists a total of 9
parking lots with details presented in Table 8. The electric capacity
of each EV and assumptions are the same as those explained earlier
for previous case study. Fig. 10 illustrates the spatio-temporal de-
tails of the EVs analyzed in this scenario. Table 9 reflects the
objective function and consumed active and reactive power in this
scenario when the IMVBSO optimization algorithm is applied. The
result advocates that as more EV power is discharged, the number
of transformer tap changing actions and switched shunt capacitors
Table 5
EVC results obtained for the IEEE 69-bus system (scenario 4).

Loading State Pconsumed (kW) Qconsumed (kVAr) Cost ($) CB# Tap #

Light 2918.1 979.7 194.7 7 þ1
Nominal 3592.4 1831.1 252.2 7 þ2
Heavy 4075.6 2268.6 289.9 9 þ2



Table 6
Base results obtained for the IEEE 119-bus system (scenario 1).

Loading State Pconsumed (kW) Qconsumed (kVAr) Cost ($)

Light 17228.6 12931.7 3547.3
Nominal 23992.2 18007.4 9809.4
Heavy 30496.4 22885.3 19344.9

Fig. 9. The network voltage profile of the IEEE 119-bus test system (Scenario 1).

Fig. 10. Number of EVs in each parking lot during the 24-h time frame (IEEE 119-bus
system).

Table 8
Details of parking lots in IEEE 119-bus test system.

Parking Lot # Bus # Capacity (charging stations) Thermal limit (kVA)

1 9 60 1455
2 16 100 5823
3 27 60 1455
4 34 60 1455
5 45 100 5823
6 61 100 5823
7 76 60 1455
8 99 60 1455
9 118 100 5823

Table 9
EVC results obtained for the IEEE 119-bus system (scenario 3).

Loading State Pconsumed (kW) Qconsumed (kVAr) Cost ($) CB# Tap #

Light 15658.2 10835.8 1156.2 7 þ2
Nominal 23716.8 14852.9 2292.7 10 þ3
Heavy 30019.2 21352.1 6088.7 8 þ3
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decrease compared to Scenario 2. Comparing the result in Scenario
2 and Scenario 3, it is observed that the dynamic behavior of the
EV's charging and discharging could positively impact the 119-bus
distribution system contrary to the IEEE 69-bus distribution system
studied earlier.

Scenario 4: Voltage Control and Reactive Power Assessment
Considering EVs and Controllable Loads.

With the parking lot database remaining the same as in Scenario
3, Table 10 demonstrates the results in Scenario 4. In this scenario, it
is assumed that the active and reactive power of the controllable
loads at bus 50 are 918.37 kW and 1205.1 kVar, respectively. This
load accounts for 4% and 7% of the total active and reactive power in
the grid. Again, from the results obtained in this scenario one can
clearly observe how the flexibility in controllable loads is harnessed
to compensate the stochasticity in the EVs (unknown charging and
discharging statuses).

6. Discussion

In order to demonstrate the effectiveness of the proposed
optimization problem, the results of four scenarios in the 24-h time
frame for the IEEE 69-bus and 119-bus systems have been provided
in Tables 11 and 12, respectively. Note that the calculation time in
the last column of these tables is obtained through carrying out the
simulations on a PC with 3.4 GHz Core i7 CPU and 16 GB of DDR4
RAM. In the fourth column of these tables, Cost_E represents the
sum of energy consumption, transformer tap changing and capac-
itor switching costs. As it can be realized from Table 11, the opti-
mization algorithm has an effective impact on reducing the costs in
Table 7
EVC results obtained for the IEEE 119-bus system (scenarios 1 and 2).

Scenario Loading State Pconsumed (kW)

S1 Light 17228.6
Nominal 23992.2
Heavy 30496.4

S2 Light 17159.2
Nominal 23754.2
Heavy 30131.7
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scenarios 2, 3 and 4. Moreover, by comparing the results of the third
and fourth scenarios, it can be concluded that utilizing the
controllable load in scenario 4 has resulted in a significant reduc-
tion (about 75%) in the voltage deviation cost making the total cost
to be reduced by 12% compared to the third scenario.

Similar remarks can be seen in Table 12 as well. It can be seen
from this table that the proposed optimization algorithm has
worked well in controlling voltage and energy in scenarios 2, 3 and
4. Moreover, the results of the fourth scenario show that utilizing
the controllable load can mitigate the effect of EVs on controlling
voltage and energy in the system and as a result causes a reduction
in the total operation cost.

Another issue which may arise when dealing with stochastic
parameters in optimization problems is the dependency of the
Qconsumed (kVAr) Cost ($) Improvement (%)

12931.7 3547.3 e

18007.4 9809.4 e

22885.3 19344.9 e

11542.4 1260.4 64.4
15497.3 1976.0 79.8
19933.4 4768.4 75.3



Table 10
EVC results obtained for the IEEE 119-bus system (scenario 4).

Loading State Pconsumed (kW) Qconsumed (kVAr) Cost ($) CB # Tap # CL%

Light 15482.1 10,293 1134.8 7 þ2 11.9
Nominal 23501.8 14579.2 2280.9 8 þ3 20
Heavy 29675.6 19274.2 5894.4 9 þ3 20

Table 11
Cost and power consumption values obtained in different scenarios (IEEE 69-bus system).

Scenario Pconsumed (kW) Qconsumed (kVAr) Cost_E ($) Cost_V ($) Cost_T ($) Calculation Time (sec)

S1 91423.2 64651.9 6778.4 35364.7 42143.1 37
S2 91323.4 51407.1 6507.5 1119.6 7627.1 121
S3 94375.2 41710.8 6496.7 652.3 7149.0 190
S4 88675.6 40172.3 6124.0 165.2 6289.2 235

Table 12
Cost and power consumption values obtained in different scenarios (IEEE 119-bus system).

Scenario Pconsumed (kW) Qconsumed (kVAr) Cost_E ($) Cost_V ($) Cost_T ($) Calculation Time (sec)

S1 545,916 409655.6 40948.1 205222.9 246,171 54
S2 466346.8 308282.9 34147.4 13009.5 47155.9 180
S3 568098.4 385780.6 41801.5 19390.5 61,192 258
S4 562385.8 351297.8 40769.1 17,293 58062.1 361

Fig. 11. Number of EVs in each parking lot during the 24-h time frame (IEEE 69-bus
system).
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optimal solution to the values of such parameters. In the proposed
optimization approach utilized in this paper, the number of EVs
arriving at the parking lots and their characteristics are considered
as stochastic parameters. Therefore, it is necessary to show that
how the final solution obtained by the proposed optimization
problem changes as the values of these parameters change. To do
that, another simulation with new randomly selected values of the
stochastic parameters has been performed for the IEEE 69-bus
system. Fig. 11 shows the new random patterns of the number of
EVs in the parking lots used in the second simulation. The results of
applying IMVBSO to this case along with the results of the third and
Table 13
Comparison of two simulations with different stochastic input values (IEEE 69-Bus Test

Scenario First simulation

Pconsumed (kW) Qconsumed (kVAr) Cost_T (

S3 94375.2 41710.8 7149.0
S4 88675.6 40172.3 6289.2

11
fourth scenarios obtained in Section 5.2 are tabulated in Table 13. It
can be seen from this table that the change in the stochastic inputs
of the problem has changed the optimal solutions in scenarios 3
and 4 slightly. However, considering the results of scenarios 1 and 2
in Section 5.2, these comparisons demonstrate that although a
slight change can be seen in the final solutions obtained in two
cases (shown in Table 13), the overall impact of the proposed
optimization problem in reducing the operation cost would be
unchanged.
7. Conclusions

This paper studied the minimization of the operation cost in
distribution systems in the presence of massive penetration of EVs.
The control strategies are proposed through shunt capacitor
switching and transformer tap changing actions. The allocation of
EVs in the parking lots and the corresponding charging/discharging
stochasticity are randomly distributed and an improved mixed real
and binary vector-based swarm optimization algorithm is proposed
as the solution technique to solve the multi-objective optimization
formulation. Several scenarios are extensively analyzed and
compared to demonstrate the impact of controllable loads on the
operation cost. Our findings revealed that the active/reactive power
control and voltage regulations are directly driven by the dynamic
and unpredictable nature of EVs in the system. Considering the
number of EVs located in the parking lots at each hour, and the
corresponding coordinated charging and discharging states, the
numerical results demonstrated how the proposed algorithm can
effectively control the network voltage and active/reactive power
by optimally adjusting the tap changer and shunt capacitors.
System).

Second simulation

$) Pconsumed (kW) Qconsumed (kVAr) Cost_T ($)

98141.7 42288.9 7357.8
92471.9 40769.7 6366.6
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Simulation results in two case studies verified the efficiency of the
proposed strategy: the impact of EV randomness was compensated
by controllable loads and, hence, the number of transformer tap
changing and shunts switching actions was significantly reduced.
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