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Abstract— Along with the rapid integration of distributed
generation units (DGUs) into the power grids is the rise in
unconventional and unpredictable patterns of the undesirable
cyber–physical intrusions and faults; this drastically increases
the risk of islanding possibilities and threatens the sustain-
ability of the energy delivery infrastructure. Classification of
cyber–physical events and developing solutions to mitigate their
impacts before rising to an islanding situation is a critical moni-
toring task in DGUs. Passive islanding detection has been widely
applied to studying the behavior of voltage signals at the point of
common coupling, which is a sophisticated challenge due to cross
similarity among fault (event) patterns and their fast dynamics.
In this article, a novel quadratic time–frequency decomposition,
namely HSS-transform, is applied over an alternative complex
representation of three-phase signal defined by the synchronous
reference frame transformation. We further exploit the principles
of informative sparse representation-based classification (TISC)
to develop a comprehensive artificial intelligence framework for
fast and reliable classification of DGU islanding and nonislanding
events with the focus on practical limitations and requirements of
a smart power electronics inviter as the desirable observational
site. Different from the state-of-the-art techniques, TISC does not
need any training procedure, while due to its linear mathematical
formulation acts inherently fast with low computational burden
on the inverter processing unit. Moreover, the simultaneous three-
phase feature extraction strategy ensures preservation of the
between-phase information.

Index Terms— Artificial intelligence (AI), cyber–physical events
(CPEs), islanding detection, pattern recognition, power elec-
tronic inverters, smart grids, sparse classification, time–frequency
analysis.

I. INTRODUCTION

SMART grid technologies have revolutionized the tradi-
tional architecture of the power grids from a unidirectional

single-layer physical system into a multilayer interconnected
network system with a real-time two-way communications
between generation, transmission, distribution systems, and
loads [1]. The rise in the (mostly renewable-based) distributed
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generation resources (such as wind and solar) in addition to
smart loads (also known as prosumers) at the distribution level
traces a decentralized architecture for the grid, where we face
not only a two-way flow of information but also a two-way
flow of energy, also known as active distribution networks [see
Fig. 1(a)] [2]. In modern active distribution networks of the
future, advanced power electronics and artificial intelligence
(AI)-based technologies, such as the Internet of Things (IoT),
will play a major role [3].

Power generation decentralization, on the one hand, and
integration of cyber-based Internet-accessible platforms, on
the other hand, lights up a variety of unconventional cyber–
physical monitoring, control, and security challenges in dis-
tributed generation unit (DGU)-enabled architectures [4], [5].
In such a highly distributed cyber-energy environment, the
real-time fault or, in general, “event” analysis plays a crit-
ical role to better improve both cyber and physical situa-
tional awareness and correspondingly enhance the security
and sustainability of the grid. Some such events can not
only result in catastrophic damages to the transmission and
distribution equipment but also significantly increase the risk
of unintentional islanding situations in DGUs, which may
correspondingly cause wildfires and large-scale blackouts.

Bridging between DGUs and the main grid [6], power
electronic inverters are most desirable monitoring sites for both
cyber and physical event recognition. Furthermore, interfacing
with energy storage units and other advanced technologies,
such as electric vehicles and IoT services, opens new pathways
into the capabilities of inverters as ideal observation points
for distributed control across the grid [6], [7]. In this regard,
there are two major challenges toward a sustainable active
distribution network: 1) data integrity and interoperability
and 2) cybersecurity [8]. Both concepts are tightly related
to the reliability of data collection and transfer. However,
considering the enormous amount of information that may
arrive in control rooms from hundreds of inverters every
second, any central monitoring and control framework would
have to be equipped with big data analytics with various data
processing and analysis challenges [9]. Nowadays, commercial
inverters are taking both single and three-phase measurements
from electrical currents and voltage waveforms for local con-
trol [10]. As such, on top of their daily control functionalities,
these measurements can be used to perform cyber–physical
event (CPE) detection, classification, and system protection
in a decentralized manner, while only the high-level reports
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Fig. 1. (a) Sustainable active distribution network architecture with AI-enhanced smart inverters (AISI), master phasor data concentrator (MPDC), and MCU.
(b) TISC-CPE.

can be communicated to the utility (see Fig. 1). This has
led to phasor measurement unit (PMU)-embedded inverter
architectures [10]. The passive islanding detection through
CPEs classification is among the emerging trends in power
electronics applications, well-suited for smart inverters within
the futuristic power systems [11].

A. Literature Review and the State of the Art
Recently, advanced signal processing and AI approaches

have been widely studied for event detection and classification
in power systems within different levels and a variety of
applications, such as islanding detection and power quality
event classification, from generation sites [12] to transmis-
sion lines [13], [14] all the way down to the small-scale
photovoltaic cell (PV)-based microgrids [15]. In the literature,
power system events classification is typically considered as a
general pattern recognition problem, which can be divided into
the following standard five-step procedure [6]: 1) phenomena
recording and raw data preprocessing; 2) potential patterns
detection/data segmentation; 3) feature extraction (FE), where
time–frequency analysis is the most popular such as short-time
Fourier transform (STFT) [16], wavelets [17], S-transform
(ST) [18], time–time transform [19], mathematical morphol-
ogy [20], and so on; 4) feature selection (FS) or dimensionality
reduction; and 5) categorization or classification. A variety of
mathematical methods have been developed to implement each

of these steps in the literature. From simple linear to highly
complex and nonlinear FE, FS and classification approaches
are available, and one may select the optimal approach based
on the data characteristics [21], [22].

B. Challenges and Motivations

For the sake of islanding detection, there are two major
sets of unresolved challenges when implementing the state-
of-the-art algorithms in power electronic inverters (or any
other candidate monitoring device with limited computa-
tional resources such as PMUs): 1) analytical problems and
2) practical problems.

Analytical problems are general algorithmic issues associ-
ated with any pattern recognition problem, including optimal
FE that was a major topic of research in islanding detec-
tion [21], [22], feature selection or dimensionality reduction
for computational efficiency, and optimal classifier training.
Practical issues include computational resource limitations,
ignorance of the collaborative information along with three-
phase systems, generalizability, and sensitivity to noise and
uncertainties.

C. Contributions

In this article and in response to the abovementioned chal-
lenges, we first introduce a novel instantaneous complex signal
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quadratic time–frequency decomposition to extract three-phase
features from a voltage or current signal in three-phase
inverters.1 We particularly develop an ST-based realization
for the S-method [30] to generate time–frequency images
of the three-phase CPEs. We verify our approach over a
comprehensive set of 20 critical (islanding and nonislanding)
events, including but not limited to line-to-line faults, line-
to-ground fault, frequency jump, phase ramp, voltage sag
caused by generation interruption, flickers, arc furnaces, and
harmonics (please refer to Section V for a full list). These
events can be either purely cyber-driven events caused by
cyberattacks or can be physical fault-driven events. Inspired by
the theory of sparse-based classification [23], we formulate the
CPE detection and classification problem in terms of a sparse
representation classification (SRC) problem with lower time
and implementation complexities compared with the state-of-
the-art classification approaches in the literature. SRC has
been used in power quality events classification and partial
discharge classification in [24] and [25].

The main privileges of the proposed SRP frame-
work, referred to as time–frequency decomposition-based
informative sparse classification for cyber–physical events
(TISC-CPE), compared with the state-of-the-art techniques are
given in the following.

• Simultaneous Three-Phase FE: Exploiting an alternative
2-D orthogonal representation for the three-phase signals
based on the Park transform [26] that contains the instan-
taneous three-phase information (see Section I-B).

• A modified time–frequency representation can result in
an enhanced set of features called TF images to address
the FE limitations in state of the art in covering the wide
range of CPE dynamics and behaviors.

• Feature Selection Independency: Due to the blessing
of dimensionality (Section IV), feature space can be
reduced by selecting random features without decreasing
the classifier accuracy (see Sections I-B and V).

• Training-Free Property: Training data samples are only
stacked into a matrix among a linear optimization for-
mulation, where no training procedure is needed (see
Section I-B).

• Linearity: The presented method results in an inherently
fast linear classifier with much lower computational cost
(see Section I-B).

• Informative Training Sample Selection: A high-
dimensional convex hull approximation technique is
used to find the prominent training samples (referred
to as informative samples) and discard the rest, which
correspondingly decreases the data space dimension
without significant changes in the classification accuracy
(see Sections I-B and IV).

• Performance Enhancement for Higher Classes. Unlike the
conventional classifiers, due to the collaborative formu-
lation of the TISC, increasing event classes results in

1In this article, we would focus on challenges in three-phase systems and
particularly on power electronic inverters; however, a very similar but simpler
approach can be used for single-phase systems, while our mathematical
frameworks can, in general, be adapted for similar applications along with
other devices and observational points in a power network.

higher sparsity in the proposed framework and better
performance in addition to robustness against noise (see
Section I-B).

We will demonstrate that, despite its simplicity, TISC has a
competitive performance in CPE classification compared with
the frontier artificial neural network (ANN) [27] and support
vector machine (SVM) [28], while it is easily adaptable to
uncertainties, which may result in unexpected changes in the
data characteristics.

II. NOTATIONS AND PROBLEM DEFINITIONS

Assume, for a 110-V–60-Hz three-phase inverter, that a set
of N =∑J

j=1 n j labeled three-phase sinusoidal electrical volt-
age segments (each of length 15 cycles) has been detected and
recorded by a continuous windowing process from J classes
of CPEs with a 9.6-kHz sampling frequency (160 sample/
cycle) and is available as the training set.2 We consider
each of these three-phase known-class vectors, yi ∈ R3×M ,
i = 1, 2, . . . , N, and M = 2400, to contain a CPE pattern.

The final goal is to develop a framework that takes a feature
vector, d test extracted from a new detected cyber–physical data
point, ytest, and assigns or maps it into an individual class of
CP events c j , j = 1, 2, . . . , J . We illustrate this combined
mapping as a mathematical function ci = A(F(ytest)), ci ∈
C = {c j | j = 1, 2, . . . , J }. Roughly speaking, operator D
stands for the data-feature mapping resulting from the FE and
FS procedure, while the feature-class (classification) mapping
is represented by the (in general nonlinear) operator A (such a
mapping is usually done by training a classifier). The optimal
framework for the selection of these mappings is unknown in
advance and may change based on the system and associated
data specifications or applications.

In this article, first, we develop a new time–frequency
decomposition that exploits the flexibilities of the ST in time–
frequency plane tiling [29] with high resolution of a modi-
fied version of Winer–Ville distribution (WVD) [30] named
S-method. We aim to develop an optimal FE method that
is adapted to address all technical requirements for classify-
ing complicated, yet within a wide range of dynamics and
occurrence time range, CPEs and scenarios. This includes
short-term transient arcs to resistive long-term harmonics.
Next, we exploit a modified sparse representation-based clas-
sification approach to perform the operator A that decreases
the size of the feature vectors in the mapping F . Furthermore,
we utilize an optimal training set selection approach to find
the most informative feature vectors for each class of CPEs.
We also discuss that, due to the sparse recovery-based formu-
lation of the proposed method, the classification mapping A is
a fast and reliable linear operator compared with the complex
and nonlinear methods proposed in the literature, well suited
for limited computational resources in power inverters.

We split our methodology into two main sections as follows:
1) instantaneous three-phase FE using HSS-transform and
2) feature selection and classification using informative sparse
classifier.

2According to [3] and [4], a data point constructed from sampling 10–20
cycles of a signal with a frequency of 10 kHz is an appropriate segment to
represent a cyber–physical event for most classes of cyber–physical events.
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III. INSTANTANEOUS THREE-PHASE

FEATURE EXTRACTION

In this section, we propose a novel simultaneous three-
phase time–frequency representation (TFR) to extract the
distinguished features from different patterns of CPEs that are
unique enough for event classification. The major advantages
of our proposed approach are as follows: 1) exploiting simul-
taneous three-phase information; 2) using enhanced WVD,
we aim to preserve the best possible time–frequency resolu-
tion; and 3) utilizing the hyperbolic ST (HST), we combine
the advantageous of Fourier basis of STFT and multiscale
resolution of wavelets altogether.

A. Instantaneous Three-Phase Signal Processing Tools

In a nutshell, time-domain-based instantaneous power theo-
ries are 3-D mathematical signal mappings (comparable to 1-D
Fourier/wavelet transform (WT) in one-phase system analysis)
that transforms any three-phase signal into an alternative cou-
pled (usually) orthogonal feature space at each sample of time.
Each coupled component in this new feature space is called
an instantaneous power component. Here, we use a famous
transform called synchronous reference frame (dq) method
to convert a three-phase signal to an alternative orthogonal
mathematical space. We investigate that tracking the associated
trajectories of the TFR of three-phase signals in these new
mathematical domains can be utilized as a new, fast and
real-time CPE indicator without imposing any power quality
issue.

B. Direct-Quadrature Transformation (dq)

The synchronous reference frame method or in short dq
transform maps a three-phase electrical signal from the abc
frame to the synchronous reference frame (dq) as follows [16]:

[
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]
=

√
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3

⎡
⎢⎢⎣

cos(θ) cos

(
θ − 2π

3

)
cos

(
θ + 2π

3

)
−sin(θ) −sin

(
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⎤
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where θ is the synchronization angle, which is time-variant
and represents the angular position of the dq frame, and it
is detected by a phase-locked loop (PLL). Due to the fact of
orthogonality of d and q components, we define the following
orthogonal complex signal:

x = vd + jvq . (2)

If the system is voltage-balanced, x carries the entire
three-phase information in an alternative mathematical rep-
resentation. It is worth noting that, by projecting an
N-dimensional data set into an M-dimension (N > M),
we will always loose a portion of the information available in
the original data space. In this particular problem (three-phase
event detection), it is a bit tricky. In general, the dq transform
has an extra component named zero component dq0. The
zero component reflects the unbalanced term of the voltage

or current signals in three-phase vector space. The type of the
unbalances can be either homopolar or heteropolar. In fact,
homopolar unbalance system is the one where the vectorized
sum of the voltages Va, Vb, and Vc is not zero, while in
the heteropolar condition, the vectorized sum is still equal to
zero, but the vectors do not satisfy the standard definition of
the balance condition where the length of all vectors (namely
110 V) should be equal and each one should be out-phase
from the others on the order of 120◦.

Our approach can handle heteropolar unbalancity since the
effect of such an unbalanced condition can be reflected in
the d and q components. Even in the case of homopolar
unbalanced situations, some sources of unbalance terms are
appeared in these terms, but we will lose the extra infor-
mation captured by zero component and this will be the
compromise we should take. In bulk-level systems and high-
power (industrial) inverters, unbalance condition is usually not
a big concern; however, as we go through the finer levels
of power grid structures (residential level), we ignore some
sources of extra information if the system is considerably
unbalanced.

Now, we use the TFR of x (for any CPE recorded on
a three-phase voltage) to extract useful features from this
complex signal for the sake of classification.

C. Time–Frequency Representation

In the last several decades, TFR has been the most popular
approach in studying the nonstationary behavior of signals
such as faults. Unlike the Fourier transform, it provides
information regarding the distribution of the signals’ energy
and power components in both time and frequency domains
simultaneously. However, the time–frequency uncertainty prin-
ciple implies that due to the strong correlation between
time and frequency resolutions, it is impossible to reach an
ideal resolution along both dimensions of the time–frequency
plane simultaneously [26]. A compromise is, hence, required,
which was the motivation for many time–frequency analyses.
As such, in general, the optimal TFR approach should be
selected concerning the application specifications.

D. Bilinear Versus Linear Time–Frequency Decomposition

There are two major classes of TFR widely used in different
applications, namely linear and bilinear/quadratic (also known
as Cohen class) transforms [30]. Without loss of generality,
in a linear TFR, the TF output of the transform is a function of
a linear integral of the input signal (3), while in the bilinear or
quadratic form, there is a quadrature dependence to the input
signal

LTFR =
∫

x(t)ωl(t − τ, f )dt (3)

QTFR =
∫

x
(

t + τ
2

)
x∗

(
t + τ

2

)
ωq(t − τ, f )dt (4)

where x is, in general, a complex signal with ∗ denoting
its conjugate and ωl and ωq are some predesigned functions
of time and frequency. In extreme cases, ωl is simplified
to a complex exponential (e−i2π f t), which will result in the
ordinary Fourier transform (5) and ωq would be equal to one,

Authorized licensed use limited to: The George Washington University. Downloaded on February 27,2022 at 22:32:39 UTC from IEEE Xplore.  Restrictions apply. 



5286 IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. 9, NO. 5, OCTOBER 2021

so QTFR will be the autocorrelation function of the signal x .
During the last two decades, linear TFRs have been vastly
deployed in a variety of scientific fields, including STFT (6),
WTs (7), and, more recently Stockwell or in short ST (9).
Although linearity is always a desirable property in signal
and systems, the quadratic structure of a TFR is an intuitively
reasonable assumption when one is going to interpret a TFR as
time–frequency energy distribution. To maintain the quadratic
dependence on the signal, we often employ the squared
amplitude modulus of the STFT or WT called spectrogram
(SP = |STFT|2) and scalogram (SCA = |WT|2), respec-
tively. Mathematically speaking, for a joint TF decomposition,
quadratic or bilinear TFRs provide better resolution with most
desirable mathematical properties (especially preserving the
time and frequency shift). Among them, the WVD results
in the best time–frequency resolution concerning the uncer-
tainty principle. However, quadratic methods, in general, suffer
from the cross-interference components in addition to high
computational complexity. As such, their applications were
mostly limited to certain case studies. The common mathemat-
ical formulations of FT, STFT, WT, and WVD, respectively,
are

FT : X( f ) =
∫

x
(
t ′
)
e−i2π f t ′dt ′ (5)

STFT : Xg(t, f ) =
∫

x
(
t ′
)
g∗

(
t ′ − t

)
e−i2π f t ′dt ′ (6)

CWT : Xϕ(t, a) =
∫

x
(
t ′
)√

aψ∗
(
a
(
t ′ − t

))
dt ′ (7)

WVD : X(t, f ) =
∫

x

(
t + t ′

2

)
x∗

(
t + t ′

2

)
e−i2π f t ′dt ′ (8)

where g is a predesigned window such as Gaussian, ψ is
a zero-mean mother wavelet function, and a = f/ f0 is
the scaling factor of the mother wavelet that generates the
daughters.

In this article, we are going to combine two modified
versions of both linear and quadratic transforms and introduce
an alternative TFR that can surpass the limitations of both
approaches. The first one is the ST, which is a modified
version of STFT, and the other one is named ST that is a
both computationally and mathematically enhanced version of
the Wigner–Ville transform.

E. S-Transform

The ST is a linear TFR that has been recently introduced
in [29]–[31]. ST combines the local Fourier analysis of the
STFT with the multiscale feature of the WT. In effect, it can
be considered as a multiscaled localized Fourier transform.
The STFT captures dynamic frequency changes over time by
exploiting a window function that provides time localization.
However, the choice of window function represents a compro-
mise. WTs were introduced to improve the STFT performance
by implementing the idea of resilient windowing or progres-
sive resolution, which enforces a finer time resolution at high
frequencies and finer frequency resolution at low frequencies.
Therefore, the WT does not directly measure frequency, but a
similar quantity called scale. In addition, the WT provides

neither phase information nor phase measurements, which
are all relative to different local references. The ST exhibits
globally referenced phase and frequency measurements such
as those of the DFT and STFT, as well as the progressive
resolution of the WT using the following definition:

ST : X(t, f ) =
∫

x
(
t ′
) | f |√

2π
e−

(t ′−t)2 f 2

2 e−i2π f t ′dt ′. (9)

In comparison with the STFT, the constant width of the local-
izing time window becomes 1/| f | in the ST, i.e., the window
width is scaled according to the inverse of the temporal fre-
quency. As a result, narrower time windows are used at higher
frequencies and wider time windows at lower frequencies
similar to the WT while replacing the scale interpretation with
the pure frequency.

F. S-Method

It has been claimed in the signal processing literature that
the Wigner–Ville technique not only results in the best TF
resolution among all TFRs but also satisfies an exponentially
large number of desirable mathematical properties. An alter-
native discrete form of the WVD is defined by

WVD(n, k) =
m= N

2∑
m=− N

2

x(n + m)x∗(n − m)e−
j 2π

N+1 2mk (10)

where x(n) is time-limited signal with n ranges in |n| < N/2,
while a constant multiplication factor of 2 is omitted.
Stankovic et al. [32] showed that we can alternatively represent
the Wigner–Ville decomposition in terms of (the simplest
form of the windowing function) STFT if it is defined as
follows:

STFT(n, k) =
m= N

2∑
m=− N

2

x(n + m)e−
j 2π

N+1 2mk . (11)

This relation has led to the following alternative TFR definition
named S-method:

SM(n, k) = 1

N + 1

l=L∑
l=−L

STFT(n, k + l)STFT∗(n, k − l).

(12)

The S-method can represent a multicomponent signal such
that the distribution of each component is its WVD, but it can
avoid cross-interference components [3].

G. S-Method Through ST: SS Transform

Similar to other linear TFR, the ST suffers from the low
TF resolution challenge in addition to the redundancy and
high computational complexity [33]. To surpass the redun-
dancy and computational complexity issues, a modified one-
to-one fast discrete version of the ST has been introduced
in [31]. To avoid the localization disturbance issue in the time
domain associated with Gaussian window in (9), we use an
HST that exploits a pseudo-Gaussian hyperbolic window [34],
where the hyperbolic format provides a frequency depen-
dence shape along with its width and height that provides
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a significantly better time and frequency resolutions at low
and high frequencies. Inspired by the one-to-one ST formu-
lation, we can define the discrete version of the HST as
follows:

HST(n, k) =
N∑

m=1

X(m, n)G(m, n)e− j 2π
N+1 mk (13)

where X (m, n) is the frequency-shifted version of the discrete
Fourier transform (DFT) of discrete signal x(n): X (m) =
1/N

∑N
m=1 x(k)e− j 2π

N+1 mk, and G(m, n) is the DFT of a hyper-
bolic window (hw), which is defined as follows:

hw(t) = 2 fs√
2π(α + β)e

(
− f 2

s ϕ(t)
2

2

)
(14)

G(m, n) = 2 fs√
2π(α + β)e

(
− f 2

s φ( f )2

2

)
(15)

where ϕ(t) and φ( f ) are following the general representation
of a hyperbolic function as follows: (α + β)/(2αβ)((τ − t −
ξ) + ((τ − t − ξ)2 + γ 2)1/2). An introduction to select the
optimized values for α, β, γ, and ξ is presented in [35] and is
out of the scope of this article. To reach the best TF resolution,
we use the following modification in (12) replacing for the
STFT with HST. We term as SS-transform

SST(n, k) = 1

N + 1

l=L∑
l=−L

W (l)HST(n, k+l)HST∗(n, k-l)

(16)

with the window function

W (l) =
⎧⎨
⎩

1

N + 1
, for |l| ≤ L

0, o.w.
(17)

We may then use the fast S-method approach introduced
in [31] to calculate the Lth-order HSS-transform of the signal
x as follows:

HSSTL(n, k) = SML−1(n, k)+ 2R
[
HST(n, k + L)

× HST∗(n, k − L)
]

HSST0(n, k) = Hspectrogram(n, k) = |HST(n, k)|2 (18)

where Hspectrogram indicates the spectrogram of the signal x
calculated by HST window and symbol R[.] stands for the
real value. Fig. 2(a)–(g) shows a comparative case study for
the TFR mentioned earlier over a chirp-shaped signal with two
slight frequency jump events at 0.5 and 1 s.

Fig. 3(b)–(e) shows the TFR feature images extracted from
a three-phase fault [see Fig. 3(a)], resulted by a capaci-
tor switching event using STFT, WT, ST, and hyperbolic
S-transform-based S-method (HSST), respectively. As we con-
sider these images to be our features, we call them as TFR
feature images (we ignored the TF axis notations).

IV. INFORMATIVE SPARSE CLASSIFICATION

This section presents an overview on the mathematical
formulation and concepts of the informative sparse CPEs clas-
sification framework using the theory of sparse representation-
based classification introduced in [23] and [25]. Also, a brief

Fig. 2. (a) Sinusoidal signal with a chirp frequency distortion and two slight
frequency jumps in 500 and 1000 ms. In the rest of subfigures, the power
of signal has been calculated in dB and mapped accordingly with either
parula or jet color maps. (b) Associated spectrogram resulted by the STFT
with a fifth-order Kaiser window of length 20% of the original signal and
70% overlap. (c) Associated scalogram resulted by the Morlet WT over
the nonlog-scale frequency axis. (d) Associated time–frequency plane from
pseudo Wigner–Ville Transform.

review is given on the relevant sparse recovery theorem
concepts and methods.
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Fig. 2. (Continued.) (e) Associated time–frequency plane from the original
S-method. (f) Associated spectrogram resulted by the HST. (g) Associated
time–frequency plane representation from the ST-based S-method (SST)
proposed in this article. While these different TFRs have slightly differ-
ent mathematical properties, each will need specific requirements for clear
visualization. For example, the scalogram of WT usually uses a logarithmic
partitioning along the frequency axis and suffers from interference in lower
ends of the time–frequency plan; as a result, a cover filter is usually plotted
over those time–frequency ranges (b). Moreover, the transforms, such as WT
or ST and SST, are illustrating a different frequency thickness along the
frequency axis due to their multiscale feature and the difference between their
kernels. One may clearly observe that the SST can have a clearer TFR of the
signal with high resolution and minimum interference. We have changed the
coloring threshold over each plot to make sure that the best presentation is
illustrated for each individual TFR based on its own specifications.

A. Sparse Representation-Based CPEs Classification

Consider a set of N three-phase CPE patterns from J
CPE classes are recorded, and each one is available in terms
of a 3-D tensor yi . As instructed in Section III, first, the
dq-transform is applied and an orthogonal complex xi is
generated (2). Next, the Lth-order HSStransform (18) of

Fig. 3. Comparison between TFR feature images of (a) a three-phase fault
resulted from three-phase capacitor switching event, (b) STFT, (c) WT, (d) ST,
and (e) HSST.

the signal xi is calculated and captured as an image called
feature image di . Finally, a training feature tensor D =
[d1, d2, . . . , d N ] ∈ R(T×M)×N is formed such that the samples
from different classes are sorted in order, that is

D = [D1|D2| · · · |DJ ]. (19)

From the concatenation of all associated feature images gen-
erated from training samples of the j th event class, a feature
subdictionary is formed and is termed D j . For the feature
image d i , T stands for the number of pixels along the
time axis, while M represents the number of pixels along
the frequency axis. These two are usually specified by TFR
specifications as well as the length of the signal, analysis
window, and maximum frequency component in the signal.
According to the theory of SRC, if the training data points of
the j th class are informative enough, a new feature image dtest

from the same class could be approximately linearly spanned
by the elements of subdictionary D j , which means that, for a
real-valued vector s j ∈ Rn j

d test = D j s j . (20)

Alternatively, one may represent d test in terms of the whole
training feature tensor

d test = Ds. (21)

Regarding the problem statement given in Section II, dtest =
F ytest and D = FY ∈ R(T×M)×N are the projection of
the test sample and training dictionary to the feature space,
respectively. If (20) holds, the obvious solution of (21) takes

Authorized licensed use limited to: The George Washington University. Downloaded on February 27,2022 at 22:32:39 UTC from IEEE Xplore.  Restrictions apply. 



BABAKMEHR et al.: AI-BASED CPEs CLASSIFICATION FOR ISLANDING DETECTION IN POWER INVERTERS 5289

Fig. 4. Visualization of the details of the mathematical solution of the TISC algorithm for CPEs.

the following sparse format s∗ = [0, . . . , 0, s j , 0, . . . , 0]T .
Sparse vector s ∈ RN is called the sparse indicator vector,
with all entries equal to zero except those associated with the
j th CPE class training subdictionary. Fig. 4 shows a visual
demonstration of such a mathematical formulation. If the
training dictionary D is formed out of an underdetermined
system of equations, i.e., L < N (with L = T×M), the theory
of sparse recovery guarantees a desirable sparse format for s∗
as the solution of (21) by using the following formulation:

P0 : ŝ0 = argmin
s
‖s‖0 s.t. f test = Fs. (22)

Here, the l0-norm stands for the number of nonzero elements
or cardinality of vector s. In terms of CPE classification
problem, since the number of CPE classes J is reasonably
large and we have enough number of training data points
from each CP event class c j{ j = 1 : J }, we can ensure
that the training dictionary D satisfies the underdetermined
condition L < N . Although P0 is known to be NP-hard,
under creation mathematical conditions on D, we can use the
following relaxed l1-norm format instead:

PN1 : ŝ1 = argmin
s
‖s‖1 s.t. ‖ f test − Fs‖2 < η. (23)

This is widely known as basic pursuit denoising regularization.
Section IV-B introduces a well-known method for solving
PN1 and the condition of the exact recovery of s in the CPE
classification (refer to [46] for details of sparse recovery).

B. Greedy Sparse Solvers and Sparse CPC Solution

The orthogonal matching pursuit (OMP) algorithm
(Algorithm 1) is a popular alternative greedy method to be
used instead of direct optimization-based solvers. In this
article, we use this solver with respect to its low time
complexity and tractability for large-scale problems. It has
been shown in the literature that if the pairwise correlation
among all columns of the training dictionary D is lower
than a certain threshold (μF = max1≤i, j≤L ,i 	= j |〈Di , D j 〉|
< 1/(2L − 1)), then the OMP can recover original ŝ = s and
the unique solution is d = D ŝ, having sparsity K or less using
several measurements that scales such as K log(L/K ) [46].

Without loss of generality, let D = FY be the train-
ing tensor/dictionary created using the data points of J CP

classes,3 and for a given d test, let ŝ1 be the optimal solution
of N P1. The selected class can be obtained as the one which
its corresponding subsegment in vector ŝ1 has the minimum
reconstruction residual value. Fig. 4 shows a visualization of
a typical SRC procedure for a CP event.

Algorithm 1 OMP
require: matrix A, measurements d = Ds + n, stopping
criterion
initialize: r0 = d, s0 = 0, l = 0, SU P = ∅
repeat

1. match: hl = D∗rl

2. identify support indicator:
supl= {ar gmax j |hl( j)|}

3. update the support:
SU Pl+1 = SU Pl ∪ su pl

4. update signal estimate:
sl+1= ar gminz:SU P(z)⊆SU Pl+1‖d − Dz‖2

rl+1 = d − Asl+1

l = l+ 1
Until stopping criterion met

Output: ŝ = sl

V. SIMULATION RESULTS AND DISCUSSION

A. Data Generation

A wide range of CPEs have been selected and simulated in
MATLAB/Simulink using IEEE-34 Bus system in addition to
a sample Microgrid model as directed in [38], [39], and [44]
(please refer to these references for full details and publicly
available models and data set). The sampling frequency was
set as 9.6 kHz to follow the practical instructions in developing
PMU-embed smart inverter design [10]. Table I summarizes
the specification of each event. For each of these 17 CPE sce-
narios/classes, 1000 possible fault cases have been generated
as directed. Next, each of these faulty signals has been polluted
by Gaussian noise to set the signal to noise ratio at 10–100 dB
randomly, based on the current PMU standards.

3For the sake of generality in notation and to be consistent with the
classification literature concepts, we hereafter call the data or feature matrix,
Y , or F as the training matrix or training dictionary and note it by A.
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TABLE I

LIST OF CPEs AND THEIR SPECIFICATIONS

Algorithm 2 TISC-CPE

input: training data matrix Y∈ RM×N , test sample
ytest∈ RM

1. Extract the feature matrix from the training data, using
a random transformation matrix
F∈ RL×M : D = FY∈ RL×N .

2. Extract features of the testing data from the test sample,
using the matrix F used in step 1: dtest = F ytest .

3. Calculate the approximated training dictionary D̂ using
Algorithm 3.

4. Solve P1 or N P1 for sparse vector ŝ1 using OMP (Alg.
1)

5. Compute J purified vectors ŝ1
j f or j= 1, . . . ,J , using

indicator function ĝ(s1) : ∈ RL→ RL , such that ŝ1
j =

ĝ(s1), is a new vector whose only nonzero entries are
the entries in ŝ1 that are associated with class c j .

6. Compute residual r j = ‖d test − D j s j
1‖2 f or j =

1, . . . , J .
7. j∗ = argmin

j=1,..., j
r j .

output: Classify ( ytest) � c j∗

B. Featurewise Comparison

In the first case study, a set of 500 CPE from each of the
16 CPE classes in addition to a normal three-phase sinusoidal
signal (total 17 classes) have been selected and the corre-
sponding feature dictionary D ε C(M×T )×N has been formed
by the concatenation of the associated time–frequency feature
images resulted from the most popular features in the litera-
ture [22]–[32]. The five feature tensors, spectrogram of
STFT, scalogram of Morlet wavelet, ST, S-method, and
HSS-transform, have been used to solve (23) and to find the
associated CPE class for a set of 500 test data samples from
each of the 17 CPE classes. Table II summarizes the classi-
fication accuracy rate. In addition to the initial 500 training
samples, we have used the convex hull vertices found by the

Algorithm 3 Informative Data Samples Selection
input: Dimensionality optimized training dictionary
D∈ RL×N

1- Initiate D̂ with any arbitrary extreme point of D.
2- Find the best element that minimizes the Hausdorff

distance.
a∗j = argmin

a j∈D\D̂
dH (D̂ ∪ a j , D).

3- D̂← D̂ ∪ a∗j
4- Return to step if the desired N̂ or ε is not achieved.

output: Approximated training dictionaryD̂∈ RL×N̂

TABLE II

FEATUREWISE COMPARISON OF CLASSIFICATION ACCURACY OF TSIC
FOR 18 CLASSES OF CP EVENTS: ALL TRAINING SAMPLES

(VERSUS In f ormative Samples)

Algorithm 3 as informative training TF feature images (which
varies from 10% for SLG faults to 80% for arc furnace)
and revaluated the TISC algorithm (result reported within
parenthesis). As one can see, the overall classification perfor-
mance remains almost the same along with all time–frequency
features with a limited set of informative samples. One may
conclude that the HSST images are wiser choices and resulted
in better classification accuracy compared with the state-of-
the-art TF features that have been used in the literature. It is
worth noting that these TFR have been mostly used to extract
features from single-phase events in previous works.

C. Comparison Versus State-of-the-Art Techniques

ANNs and SVM are the most popular methods that
have been vastly utilized in a variety of pattern recognition
problems. ANNs, SVMs, and their derivations are widely
employed power systems. These methods have been partic-
ularly used in single-phase power quality events classification
and islanding detection [21], [22]. It is widely observed
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TABLE III

CP EVENT ALL TRAINING SAMPLES (VERSUS INFORMATIVE SAMPLES)

that in high-dimensional feature spaces, the usage of radial
basis functions (RBFs) projects the initial feature space into
an infinite-dimensional Hilbert space, which can solve the
nonlinearity problem with a high accuracy [40]. As such,
we have designed and evaluated an RBF ANN with Gaussian
function as the activation function in the hidden layers’
neural units and a tangent hyperbolic function in the output
layer (with 120 neurons in the hidden and 40 neurons in
the output layers, respectively). The basis function centers
have been determined using a hybrid genetic k-means clus-
tering procedure introduced in [40] (for details, please refer
to [41]). Moreover, we implemented an RBF 1v1 SVM (with
150 machines). It has been shown in the literature that RBF
kernel SVMs have the minimum number of support vectors,
minimum value as classification error, and good classification
accuracy [42]. We determined the penalty factor in addition
to the adjustable parameter of the RBF using an improved ant
colony optimization algorithm introduced in [42]. Table III
shows the identification accuracy rate for TISC-CPE versus
RBF-NN [43] and RBF-SVM [42] for two scenarios: 1) all
500 training feature images are used and 2) only a selected
number of informative feature images (which varies from 10%
for SLG faults to 80% for arc furnace) are used to either form
the feature matrix D or to train the ANN or SVM classifiers.

The average performance of all approaches is slightly over
90% with TISC faintly led by 1% margin. This is a notable
achievement by considering the linear formulation of TISC
with no training procedure performed. In the informative
scenarios, however, TISC leads to an average accuracy margin
of 4%. This is not surprising as we already knew that using a
smaller number of training samples would affect the generaliz-
ability of the sophisticated versions of ANNs and SVMs. The
more sophisticated ANN and SVM architecture is the cost
that we should pay to arrive at an acceptable identification
accuracy without collecting extra training samples extraction
procedures.

D. Discussions on Notable Properties of TISC-CPE

As we have discussed throughout this article and through
the numerical results, TISC-CPE has the following unique
features that will help reducing the computational cost and
implementation complexity in an inverter processing unit with
limited computational capabilities:

1) Our specific formulation exploits an alternative orthog-
onal complex signal that contains simultaneous three-
phase patterns at once (2). Single-phase methods should
be implemented separately on individual phases, which
results in loosing possible relative coupling between-
phase information such as unbalance.

2) According to the sparse recovery literature [36], due
to the fact of “blessing of dimensionality,” one may
implement a random projection from feature space to
another alternative mathematical domain with lower
dimensionality without affecting the recovery perfor-
mance. In TISC-CPE, this is equivalent to generate
random faces from time–frequency images resulted from
HSS-transform.

3) We may use the idea of informative sample selection to
optimize the number of training samples to be concate-
nated into matrix F . This idea indicates that for each class
of events, there is a certain set of informative data samples
that are spanning the whole cluster of the corresponding
class in the designated feature space. These informative
samples are in fact the vertices of the associated convex
hull of the class cluster within the feature space. This can
dramatically reduce the dimensions of this matrix and
reduce the computational complexity in our algorithm.
Algorithm 3 is a sample code for this purpose [37].

4) Back to our conversation in Section VI-A, not only
the increase of the number of CPE classes does not
cause any issue in the TISC-CPE formulation, but it also
improves the overall recovery performance by enhancing
the underdeterminedness of the feature tensor by adding
more columns.

5) Table IV [25] compares the time complexity of a
two-layer ordinary ANN versus sparse classifier, with N
to be the number of training samples, M the number of
features or variables, and J the number of output classes.
Finally, I is the total number of iterations needed for
ANN convergence and k is the sparsity of the classifica-
tion signal s (Section IV-A).

Certainly, the computational complexity for a convolutional or
deep neural network would be even much higher, depending on
the network architecture. A recent study in [45] revealed that in
three-phase unbalanced systems, the complexity of advanced
control algorithm is considerably high, where even advanced
32-bit microcontrollers such as TMS320F28335 ACTIVE
Delfino 32-bit monitoring central unit (MCU) with 150 MIPS,
FPU, 512-kB Flash, EMIF, 12-b ADC cannot handle all func-
tionalities without suffering from high computational burdens.
However, without any computational limitations and up on
availability of unlimited data samples from all classes of
islanding events and based on the recent findings in the area
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TABLE IV

COMPUTATIONAL COMPLEXITY COMPARISON

of machine learning and AI, a deep neural network should
outperform any known classification technique.

VI. CONCLUSION

In this article, we explored the problem of CPEs classifica-
tion for islanding detection in power inverters using a new
modified three-phase TFR called in addition to the sparse
representation-based classifier. TFRs are the most popular
techniques in studying nonstationary signals, such as fault
events in a power system. However, nowadays, the huge
dynamic range of cyber–physical faults/events that may hap-
pen in DGUs is highly increased due to penetration of renew-
ables and cyber intrusions where HSST showed promising
alternative decomposition with higher resolution for TF analy-
sis of CPEs. This is particularly important in detection of
islanding situations to avoid catastrophic damages, such as
wildfires or human risk factors. On the other hand, it has
been widely observed that there are alternative mathematical
representations for almost all the industrial (and most of
the natural) phenomena where the new mathematical rep-
resentation lies on a low dimensional subspace, where the
signal under study has a sparse representation, such as Fourier
representation for electrical signals. This low dimensionality
formed the basis of our justification for exploiting the idea of
informative sparse representation-based classification for CPEs
classification. Training-free property and feature independency
eliminate all the required effort and time for FE-FS and train-
ing steps, while informative sample selection provides a degree
of freedom to the user to decrease the data space dimension.
We called this combined approach as TISC-CPE; we verified
its performance on a big range of CPEs and numerically
compared the results versus state-of-the-art algorithms.
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