
Received: 24 June 2020 - Revised: 8 September 2020 - Accepted: 1 October 2020 - IET Smart Grid
DOI: 10.1049/stg2.12005

OR I G INAL RE SEARCH PA PER

Planning for resilience in power distribution networks:
A multi‐objective decision support

Pouya Jamborsalamati1 | Rasoul Garmabdari2 | Jahangir Hossain3 | Junwei Lu2 |
Payman Dehghanian4

1School of Engineering, Macquarie University,
Sydney, New South Wales, Australia

2School of Engineering, Griffith University, Nathan
Campus, Nathan, Queensland, Australia

3School of Electrical and Data Engineering,
University of Technology Sydney, Sydney, New South
Wales, Australia

4Department of Electrical and Computer
Engineering, The George Washington University,
Washington, District of Columbia, USA

Correspondence

Pouya Jamborsalamati, School of Engineering,
Macquarie University, Sydney, NSW 2109, Australia.
Email: pouya.jamborsalamati@hdr.mq.edu.au

Abstract
Power grid response against high‐impact low‐probability (HILP) events could be
enhanced by (a) hardening mechanisms to boost its structural resilience and (b) corrective
recovery and mitigation analytics to improve its operational resilience. Planning for
structural resilience and attempts to find the optimal location of the Tie switches in
radially operated power distribution networks that enable harnessing the network
topology for maximised resilience against HILP disasters are focussed. This goal is
achieved through a novel resilience‐oriented multi‐objective decision making platform,
which employs a k‐PEM based probabilistic power flow (PPF) algorithm. The proposed
framework offers a decision making analytic embedded with the fuzzy satisfying method
(FSM) that characterises the system resilience features, such as robustness, restoration
agility, load criticality, and recovered capacity, to assess different network reconfiguration
options and select the optimal solution for implementation. The aforementioned resil-
ience features are formulated in nodal level and then aggregated over the entire system to
characterise the system‐level objective functions. The performance of the suggested
framework is analysed on the IEEE 33‐Bus test system under a designated HILP event,
and the applicability on larger networks has been verified on the IEEE 69‐bus test
system. The results demonstrate the efficacy and applicability of the proposed framework
in boosting the network resilience against future extremes.

1 | INTRODUCTION

Power grid resilience is defined as the ability of the system to avert
possible event‐driven damages, tolerate accidents, and engender
a swift response and recovery following extreme disasters [1,2].
The reliable supply of electricity upon which modern society
depends is at risk due to the unforeseen effects of a myriad of
converging factors: elevated incidences and severity of outage‐
inducing high‐impact low‐probability (HILP) events, including,
most notably, severe weather patterns and cyber attacks, sudden
changes and proliferation of renewable resources, etc [3–5].

1.1 | Background and motivation

More frequent realisation of HILP events in power networks
during the past decades has manifested significant importance

of maximising the grid preparedness against such incidents.
Examples of HILP incidents in recent years are South
Australian blackout in 2016 with 900 MW power outage due to
extreme weather [6], major blackout in Brazilian grid in 2018
with 18,000 MW curtailed power in cascaded fault condition,
outage in India in 2012 with 1423 TWh outage, severe power
cut in the USA in 2015 with 180,000 customers affected due to
abnormal weather condition, among many others [7,8].

Unlike the widely accepted standard metrics for reliability
assessment in power distribution systems, for example, system
average interruption duration index (SAIDI), system average
interruption frequency index (SAIFI), and energy not supplied
(ENS), a comprehensive evaluation framework which quan-
tifies the resilience features such as preparedness, robustness,
and restorative rapidity (among the others) is missing [6].
Resilience assessment could be focussed on a load point (node
level) or the entire system (feeder‐level) [9]. An effective
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resilience metric could be utilised as an objective function in a
wide variety of power grid long‐term planning and short‐term
operation decisions to boost its capacity in dealing with the
HILP incidents. Such a resilience metric needs to capture
various aspects of the power grid behaviour ranging from the
pre‐event (infrastructural resilience) to the post‐event (opera-
tional resilience) time frames, and its evaluation framework has
to contain different quantitative and qualitative terms such as
measures on energy capacity, rapidity, and economy [6].

1.2 | Related works

There are several research efforts that can be found in the
literature on enhancing the resilience of power distribution
grids to HILP events. In References [10–13], resilience‐
oriented outage management systems, which utilise microgrids
and renewable energy resources to re‐energise the critical loads
following a natural disaster, are proposed where the focus has
been primarily on enhancing the grid operational resilience. In
References [9,14–16], novel evaluation frameworks with new
metrics to quantify various resilience features are presented.
Some of these efforts are founded based on the principle
concept of graph theory for single‐node level resilience eval-
uation in the network where parameters such as path redun-
dancy, node connectivity, and resourcefullness are taken into
account. Furthermore, parameters such as disruptive and
restorative rapidity are suggested in References [6,17,18]
focussing on the system‐level (feeder‐level) resilience
evaluation.

While such efforts offer provisions for characterising the
power distribution grid resilience and its swift operational
response and recovery following an HILP incident, the flexible
resources are assumed already planned and readily available to
be utilised in practice. In References [19–22], preparedness
against extreme events is pursued by optimal allocation of the
grid‐scale flexible resources (e.g. battery storage units, renew-
able resources, and electric vehicles) during extreme scenarios.
Research outcome presented in Reference [23] shows analytical
results of a risk assessment framework for weather‐resilient
power grid operation and control, where predictive measures
for minimising the risk against forecasted weather‐driven
outages are suggested through effective utilisation of network
topology control. Enhancing the grid operational resilience
through changing the network topology requires additional
switches that should be planned to be placed in strategic
locations in the network, thereby facilitating rerouting the way
electricity flows for swift response and recovery in dealing with
the aftermath of HILP incidents. There has been multiple
research studies conducted on optimising the location of Tie
switches in distribution networks. It could be observed from
References [24–27] that the Tie connection has been optimised
based on various objective functions mostly from the reliability
perspective to maximise DG loadability and load criticality.
However, none of these Tie switch optimal placement strate-
gies were designed to capture the resilience goals and
requirements.

1.3 | Key contributions

Focussing on the pre‐disaster preparedness and to pursue
planning for structural resilience, this paper offers analytics
that aim to maximise hardening against HILP events through
resilience‐oriented placement of Tie switches in radially oper-
ated power distribution networks. We approach this planning
problem through a multi‐objective optimisation framework
that guides the optimal combination of the nodes to be
re‐connected following the network reconfiguration. In a
modular architecture, a k‐PEM based probabilistic power flow
(PPF) algorithm is implemented to analyse the system
operating state in each arrangement scenario of Tie switches
across the network. The proposed analytics capture the load
uncertainties in each restoration plan and utilises the fuzzy
satisfying method (FSM) to make a final planning decision. The
main contributions of this paper are illustrated in Table 1 and
summarised below:

� Nodal‐level resilience measures and metrics are proposed to
quantify several resilience features that could be adopted by
utilities for resilience‐oriented planning and operation
decision optimisation. The proposed resilience indices are
employed in this paper in a multi‐objective optimisation
engine to optimally allocate the Tie switches in radial dis-
tribution networks.

� A modular framework for dynamic evaluation of the
distribution network reconfiguration practices to maximise
the resilience metrics is proposed. The developed frame-
work utilises a k‐PEM based PPF algorithm, which
considers dynamic admittance matrix to evaluate the
network operating condition at each reconfiguration plan.

� A diverse set of HILP scenarios is generated, followed by a
detailed analysis of the results to demonstrate the efficacy of
the proposed framework in boosting the network resilience
against HILP disasters. The extensive discussions on the
numerical results include both single‐objective and
multi‐objective approaches, where the applicability of the
proposed framework on both small‐scale and large‐scale
networks is verified.

1.4 | Organisation of the paper

The rest of the paper is organised as follows: Section 2 pre-
sents the components which are utilised for resilience‐oriented
analysis in this paper. This includes: (a) introduction of the
proposed resilience metrics and measures which are used to
characterise the objective functions, (b) the objective function
definitions for multi‐objective optimisation, and (c) description
of the k‐PEM based PPF method used for calculation of the
nodal resilience metrics in the network. Section 3 illustrates the
workflow diagram and presents the details related to the pro-
posed decision making platform. Section 4 concentrates on the
case study results and the analysis of the findings. This Section
also contains the optimal switch placement candidates and
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discussions on multi‐objective approach to select the best
candidate that satisfies all objective functions. Section 5
provides some discussions on the methodology and the
computational efficiency of the proposed framework. Finally,
Section 6 concludes the paper with point‐by‐point presentation
of our contributions.

2 | COMPONENTS FOR RESILIENCE‐
ORIENTED ANALYSIS

An overview of the proposed multi‐objective decision making
framework to optimally locate Tie switches in the network is
demonstrated in Figure 1. The framework consists of com-
ponents such as PPF, scenario generator, index calculator, and
multi‐objective optimiser, which are described in details in the
following sections.

This paper proposes the analysis components as follows:

2.1 | Proposed resilience measures and
metrics

An overview of the power system behaviour in the face of an
HILP incident is conceptually demonstrated in Figure 2. P(t) is
the time‐variant system behaviour function. At tNO, an HILP
event occurs, and the system goes to a performance degrada-
tion phase until tPD. From tPD to tOU is represented as the
system downtime with minimum number of customers served.
At tOU, the system response and recovery starts, and it takes
multiple steps to realize a full restoration, where the system
performance is migrated back to its normal operating condi-
tion. First partial recovery step leads to a temporary steady‐
state performance level indicated in Figure 2 from tER1 to tPR1,
and the last step ends in the pre‐event system performance
level corresponding to the time instant tFR.

As described earlier, there are three main categories of
metrics that are commonly used for resilience assessments in

power distribution systems: (i) time‐based metrics, (ii) energy‐
based metrics, and (iii) economy‐based metrics. Since our
focus here is on the pre‐event planning for structural resil-
ience (i.e. grid hardening), time‐based measures (reflecting the
rapidity of the system restoration) are not taken into account.
Restoration of a faulty radial feeder by connecting a Tie
switch between the best pair of nodes is focused. Figure 3
demonstrates a generic view of a distribution system with a
normally open Tie switch in the network. The proposed
resilience metrics are defined over a single‐node and summed

TABLE 1 Comparison of resilience‐oriented evaluation and optimisation platforms in the literature compared to this study

References

Level of
resilience
considered

Operational
phase
covered

Novel
resilience
metric
developed?

NRC⋆

considered?
NRA⋆⋆

considered?
NRS⋆⋆⋆

considered?
NRL⋆⋆⋆⋆

considered?

Multi‐objective
optimisation
conducted?

[9–12] System Post‐event
(Operational)

X ✓ ✓ X X X

[8,13–15] Nodal and
system

Pre‐event
(Planning)

✓ ✓ ✓ ✓ X X

[5,16,17] System Post‐event
(Operational)

✓ ✓ ✓ ✓ X X

[18–22,
24–27]

System Pre‐event
(Planning)

X ✓ ✓ X X X

This paper Nodal and
system

Pre‐event
(Planning)

✓ ✓ ✓ ✓ ✓ ✓

Notes: ∗Nodal restoration criticality, ∗∗Nodal restorability ∗∗∗Nodal robustness ∗∗∗∗Nodal restoration losses.

F I GURE 1 Overview of the main components proposed for
resilience‐oriented analysis of power distribution networks
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over the entire feeder to characterise the resilience objective
functions. The suggested metrics are introduced as follows:

1. Nodal restoration criticality (NRC): NRC demonstrates the
level of active power consumption and the type of the load
(critical loads such as industry, hospitals, and fire stations)
served at each load point. This metric represents the pro-
portion of the critical loads covered by the restoration
process to the total loads restored in the network. This
index could be used to prioritise the nodes during the
restoration process and is formulated for the node N in the
network as indicated in Equation (1).

NRCN ¼ Pinj;N ¼ ∣ ∑
j∈ΩN

G

PGen;Nj � ∑
i∈ΩN

L

PL;Ni ∣

0

@

1

A�
PrN
PTot

ð1Þ

where P inj,N is the injected power at each node. Pi L;N and
PGen;Nj are the level of consumed and generated active power at
node N, respectively. If there is any DER unit connected to a
node, it will be reflected in the generated active power level of
that particular node. ΩN

L and ΩN
G are the set of loads and

generating units connected to node N, respectively; PrN is a
utility‐defined number assigned to node N depending on the
type of the connected load, and PTot is the total amount of load
restored by a restoration plan. Higher values of NRC reflect a

higher degree of criticality covered by a given restoration plan
and is more desired.

2. Nodal robustness (NRS): NRS is defined by the difference
between the nodal voltage profile before and after the
restoration plan, the number of connected generating units
(|ΩN

G|) and the number of incoming branches to node N
(|ΩN

B |). The higher the difference in the nodal voltage
profile before and after a restoration plan and the lower
|ΩN

G| and |ΩN
B | are, the less robust is the distribution

network to HILP incidents. Hence, NRSN for node N is
formulated as in (2).

NRSN ¼ |VNth

bef ore � V
Nth
af ter|

� �
�

1
|ΩN

B |
�

1
|ΩN

G|
ð2Þ

3. Nodal restorability (NRA): NRA indicates the amount of
load which would be restored by energising a single node in
the healthy section of a faulty feeder. This restored load for
the Nth node in a radial feeder is equal to the summation
over all loads served at node N to the furthest downstream
node in the feeder. Additionally, the number of outgoing
branches from the node (|ΩN

U|) is a critical factor when
evaluating the NRA. The NRAN for the Tie switch con-
nected to node N is formulated in Equation (3).

NRAN ¼ ∑
i∈ΩN

L

PL;Ni þ ∑
j∈ΩNþ1

L

PL;Nþ1j þ…

0

@

…þ ∑
q∈ΩEOF

L

PL;EOFq

1

A� |ΩN
U| ð3Þ

where PL;EOFq is the load served at the last node of the feeder.

4. Nodal restoration losses (NRL): NRL aims to characterise
the power losses related to the restoration path created by
closing the Tie switch during the restoration process. NRLNF I GURE 2 Overview of the system behaviour subject to an high‐

impact low‐probability (HILP) event

F I GURE 3 Generic view of a radial distribution network with Tie switches considered for formation of the YAC matrix
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indicates the restoration losses in a radial feeder, where the
Tie switch is connected to nodeN, as shown in Equation (4)

NRLN ¼ PLossN þ PLossNþ1 þ⋯þ PLossEOF þ P
Loss
Tie ð4Þ

where PLossN is the power losses at Segment N (between nodes
N and N þ 1), PLossEOF is the power losses in the last segment of
the feeder, and PLossTie is the power losses corresponding to the
path created by closing the Tie switch.

2.2 | Objective functions

The above metrics of resilience are here used to form the
objective functions. The optimisation engine embodies a mixed
integer linear programing (MILP) formulation that aims to find
the optimal location of the Tie switch in the network, primarily
planned to enhance the network resilience against HILP
disasters.

1. System‐wide robustness: The first objective function uti-
lises the NRSN metric to minimise the system‐level per-
formance degradation when subjected to an HILP event.
NRSN is defined over a single node in Equation (2) and
needs to be summed over the entire nodes in the
network for a system‐wide analysis. The objective func-
tion is formulated below subject to a set of system and
operational constraints:

min NRSTot ¼ ∑
N∈E

αNNRSN
� �

αN ∈ f0; 1g ð5Þ

NRSNmin < αN :NRSN ≤ NRSNmax ∀N ∈ fEg ð6Þ

PGen;Nmin ≤ αN :PGen;N ≤ PGen;Nmax ∀ N ∈ fEg ð7Þ

PFlow;kmin ≤ αN :PFlow;k ≤ PFlow;kmax ∀ k ∈ fΩTg ð8Þ

∑
q∈ΩN

U

PFlow;kq þ ∑
i∈ΩN

L

PL;Ni ¼ ∑
j∈ΩN

G

PGen;Nj ð9Þ

αN ∈ f0; 1g ∀N ∈ fEg ∀ k ∈ fΩTg ð10Þ

where PFlow,k is the power flow in branch k, ΩT is the set of
network branches, and αN is a binary variable which indicates
whether a node is involved in the restoration process.
Constraint (6) ensures that the voltage difference in all nodes
remains within a certain limit following the restoration
process. The output power of generating units is limited to
their physical capacities in Equation (7). Constraint (8) en-
forces that the electricity flow in distribution lines,
involved in the service restoration, is bounded by their ca-
pacities. The power balance constraint at each node is set in
Equation (9).
2. System‐wide restoreability: This objective function aims

to maximise the amount of the restored load via

connection of a Tie switch in a restoration plan and is
built on the suggested NRAN metric. As indicated in
Equation (3), the NRAN represents the summation of all
loads restored in the feeder by energising the single‐
node N. The objective function is formulated in Equa-
tion (11) subject to several system and operational
constraints:

max NRATot ¼ ∑
N∈E

∑
i∈ΩN

L

βNP
L;N
i

0

@

1

A βN ∈ f0; 1g ð11Þ

NRANmin ≤ αN :NRAN ≤NRANmax ∀N ∈ fEg ð12Þ

PGen;Nmin ≤ αN :PGen;N ≤ PGen;Nmax ∀ N ∈ fEg ð13Þ

PFlow;kmin ≤ αN :PFlow;k ≤ PFlow;kmax ∀ k ∈ fΩTg ð14Þ

βN ∈ f0; 1g ∀N ∈ fEg ∀ k ∈ fΩTg ð15Þ

Constraint (12) ensures that the restored loads do not
exceed a threshold—that is to avoid a possible overload in
a neighbouring feeder—and is set to be higher than a
minimum expected value. NRANmax is determined by
the capacity of a feeding transformer in the neighbour
feeder which will export power to the faulty feeder
when a Tie switch is connected. Constraints (13)–(15)
are employed to avoid exceeding capacities of the
distribution lines and generation units. βN is a binary
variable indicating whether a node is involved in the
restoration process.
3. Restoration of critical load points: A higher load outage

recovery through a restoration plan does not necessarily
result in recovery of highly critical load points. This
objective function maximises the load criticality picked
by a restoration plan and is formulated in
Equation (16):

max NRCTot ¼ ∑
N∈E

γNNRC
N

� �

γN ∈ f0; 1g ð16Þ

NRCNmin ≤ γN :NRC
N ≤ NRCNmax ∀ N ∈ fEg ð17Þ

γN is a binary variable to select the nodes involved in the
restoration plans. Constraint (17) summarises various opera-
tional constraints and ensures a minimum recovery of critical
loads via a restoration plan. Furthermore, the criticality picked
by a restoration plan must not exceed a threshold, which
otherwise violates the physical capacity of lines and generating
units.
4. Restoration losses: This objective function is charac-

terised to minimise the active power losses in the
network resulted by adoption of a restoration plan and
connection of a Tie switch. The NRLN, presented in
Section 2, represents the network total power losses in
the restoration path.
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min NRLTot ¼ ∑
i∈ΩT

ζiP
Loss
i

 !

ζN ∈ f0; 1g ð18Þ

NRLNmin ≤ ζN :NRLN ≤NRLNmax ∀ N ∈ fEg ð19Þ

ζi is a binary variable to select distribution lines which are
used during the service restoration process. Operational con-
straints (12)–(14) are aggregated in Equation (19), which limit
the amount of network losses in a restoration path. The
thermal capacitance of the distribution lines and the physical
capacity of generating units must not be violated via a resto-
ration plan.

2.3 | Probabilistic power flow

PPF is an essential component of the power system planning
with uncertainties taken into account [28]. First, the power
flow along with the essential constraints (e.g. radiality
constraint) considered in this work are presented. The
description of the uncertainty modelling and PPF come next in
this subsection.

2.3.1 | Power flow and essential constraints

Power flow has been formulated and discussed in many ref-
erences, but the substantial equations are as follows:

Pneti ¼ ∑
g∈G
Pgi � ∑

d∈D
Pdi ð20Þ

Qneti ¼ ∑
g∈G
Qgi � ∑

d∈D
Qdi ð21Þ

Pneti ¼ V i ∑
j∈Nb

Y ijV jCosðδi � δj � θijÞ ð22Þ

Qneti ¼ V i ∑
j∈Nb

Y ijV jSinðδi � δj � θijÞ ð23Þ

where d and g are indices for loads and generating units at each
bus running from 1 to Di and 1 to Gi, respectively. Pneti and
Qneti are the net active power and reactive power injection at
bus i, respectively. Inequality constraints represent maximum
and minimum allowable limits for bus voltages at PQ buses
and reactive power production of generating units at PV buses
as follows:

Vmin� PQ
i ≤ VPQ

i ≤ Vmax� PQ
i ð24Þ

Vmin� PV
i ≤ VPV

i ≤ Vmax� PV
i ð25Þ

Radial topology of the network must be maintained over all
time, and this constraint is formulated as follows:

∑
ði;jÞ∈ΩT

Connti;j ¼ |E| � λt ∀ t ∈ fTg ð26Þ

∑
ðjiÞ∈ωT

f ltji � ∑
ðijÞ∈ωT

f ltij ¼ Import
t
i ∀ t ∈ fTg ð27Þ

∑
ðijÞ∈ωT

f ltij � ∑
ðjiÞ∈ωT

f ltji ¼ f g
t
i ∀ t ∈ fTg ð28Þ

Connti;j:Tie ≤ f lij ≤ Connti;j:Tie ∀ t ∈ fTg ð29Þ

where Connti;j denotes the connection status of branch (i, j) at
time t (1 if the branch is connected, 0 otherwise). ΩT repre-
sents the total number of branches in the network. |E| is the
number of all nodes. λt is the number of islands formed due to
the network reconfiguration at time t. flij is the fictitious flow
on branch (i, j) at time t. f gti is the fictitious supply at source
node i at time t. Importti is the fictitious imported power by
the candidate tie connection. Tie is the set of possible tie
connections to Node i and T is the set of time periods. Two
conditions need to be satisfied to maintain the network radi-
ality at all times: (i) the number of online branches in each
restoration plan should be equal to the total number of nodes
in the restoration plan and (ii) all load nodes should be
connected to a determined source node in each restoration
plan. The first requirement is met in constraint (26) through
the concept of fictitious source and load nodes. The latter is
fulfiled in constraints (27)–(29).

2.3.2 | Uncertainty modelling

Uncertainty is one of the major factors which escalate the risk
on any decision made in power systems [29]. Due to numerous
uncertainties in power systems, such as in the system demand
growth, power system studies need to be equipped with tools
for uncertainty modelling. There are several approaches taken
in the literature to address the uncertainty modelling in power
systems. Monte–Carlo Simulation (MCS) is one of the main
methods to model the uncertainties precisely. However, a large
number of simulations and higher computational burden is the
drawback of this approach [29]. Methods such as multi‐linear
model, the cumulant and Von Mises functions, and the Gram–
Charlier expansion method require mathematical assumptions
to accomplish [30–32]. First‐order second‐moment method
(FSOMM) is an approximate approach which relies heavily on
derivative of random variables [32]. Among all, the point
estimate method (PEM) has gained attraction in recent
research studies with the following main advantages [33]:

� Although PEM employs a deterministic routine for uncer-
tainty modelling, its computational burden compared to the
other similar probabilistic problem solving methods such as
MCS is significantly lower.

� Lack of data cannot crucially affect the effectiveness of the
PEM method as the random input variables are approxi-
mated with their first three moments.
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2.3.3 | PEM algorithm

The PEM is adopted to compute the moments of random
variables Y which are a function of n random input variables X,
that is, y ¼ F(x1, x2, …, xn) These statistical moments are the
mean (i.e. the first moment around the source) and the variance
(i.e. the second moment with reference to the mean). In our
resilience‐oriented problem for placement of Tie switches, the
input and output random variables can be indicated as follows:

X ¼ ½PL;Ni ; |VN
bef ore � V

N
af ter|� ð30Þ

Y ¼ ½NRC;NRS;NRA;NRL� ð31Þ

Each input random variable is concentrated on K points,
which are made available by the first three moments of the
input random variables. K identifies different variants of PEM
in the K‐PEM method [29]. Due to the required accuracy and
computational burden, 2‐PEM is adopted in this work for
uncertainty modelling. The statistical data of the output
random variables can be calculated with regards to these points
and the relation function between the input and the output
variables. The following steps are taken to implement the
2‐PEM‐based PPF procedure [29]:

� A suitable probability distribution function (PDF) is
assigned to each probabilistic variable.

� E(Y) ¼ E(Y2) ¼ 0
� The crucial parameters of the 2‐PEM have to be calculated

based on the following equations:

ξk;1 ¼þ
ffiffiffi
n
p

ξk;2 ¼ �
ffiffiffi
n
p

ð32Þ

Pk;1 ¼ Pk;2 ¼
1
2n

ð33Þ

where ξk,1, ξk,2, Pk,1, and Pk,2 represent the locations and
probabilities of concentrations, respectively.

� k is set to one (k ¼ 1).
� xk,1 and xk,2 have to be determined and the deterministic

power flow has to be deployed with regards to the input
vector X.

xk;1 ¼ μX;k þ ξk;1:σX;kxk;2 ¼ μX;k þ ξk;2:σX;k ð34Þ

X ¼ ½μk;1; μk;2;…; xk;i;…; μk;n� i¼ 1; 2 ð35Þ

where μx,k is the mean value of the kth input random variable.

� In this step, E(Y ) and E(Y 2 ) need to be updated.

EðY Þðkþ1Þ ≅ EðY ÞðkÞ þ ∑
2

i¼1
Pk;i:hðXÞ ð36Þ

� k ¼ k þ 1 should be conducted, and steps after k ¼ 1
should be repeated until all random variables are covered.

� Standard deviation and the expected value of Y must be
calculated from the following equations:

μy ¼ EðY Þ ð37Þ

σy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðY 2Þ � μ2y
q

ð38Þ

3 | MULTI‐OBJECTIVE DECISION
PLATFORM FOR RESILIENCE‐
ORIENTED PLACEMENT OF TIE
SWITCHES

This section describes the modular resilience‐oriented frame-
work developed to solve the optimisation problem presented
in Section 2. The developed framework utilises the k‐PEM
based PPF and tries to iteratively maximise the proposed R
index of resilience. The key element in the proposed optimi-
sation platform is the dynamic admittance matrix (YAC), which
determines the distribution network topology in each place-
ment scenario of the Tie switch. The overall formation of YAC
for a generic radial network with E number of nodes and a Tie
switch connected between nodes a and b is illustrated in
Figure 3. The YAC shown in this figure is generic and the same
approach could be applied to construct the YAC in radial
networks with several Tie switches connecting multiple pairs of
nodes. One needs to note that Yi,j ¼ Yj,i ¼ Gi,j þ jBi,j; where
Gi,j and Bi,j are the conductance and the susceptance of the
lines between nodes i and j, respectively. YTiea;b is the admittance
of the tie‐line that is set online when closing the normally open
Tie switch connecting nodes a and b in the network and is
equal to YTiea;b ¼ Y

Tie
b;a ¼ GTie þ jBTie; where GTie and BTie are

the conductance and the susceptance of the Tie‐line, respec-
tively. In a generic format, a Tie switch is connected between
nodes a and b, which affects the elements on the corre-
sponding rows and columns of the (YAC) matrix by YTiea;b
(admittance of the Tie‐line). The affected elements in the
admittance matrix are highlighted in red in Figure 3. The size
and the elements of the admittance matrix can change
depending on the grid topology following a reconfiguration
plan.

Figure 4 demonstrates the proposed multi‐objective deci-
sion making framework for resilience‐oriented placement of
the Tie switches in radial power distribution networks. The
proposed framework consists of four main stages as follows: (i)
Scenario Generation, (ii) k‐PEM‐Based PPF, (iii) index calcu-
lator, and (iv) multi‐objective optimisation and decision
making.

Stage 1: receives the network measurements along with its
topology and contains generation and distribution system
datasets, through which the admittance matrix for the im-
ported YAC is formed. A set of candidate nodes are selected to
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go black (offline) as a result of an HILP incident scenario. All
possible pairs of nodes, characterised by a node in restorable
section of the network and a node in the non‐affected phys-
ically accessible section of the network, are stored as a set of
Tie switch site candidates. For each Tie switch placement
candidate, the Tie elements in YAC are added as shown in
Figure 3 (red elements). The YAC is generated for all possible
Tie switch locations, which is used as the input to the next
stage.

Stage 2: The PPF, described in Section 2.3, runs at this
stage for each generated YAC from Stage 1 and returns the
mean values of the output variables.

Stage 3: Resilience metrics introduced earlier in Equations
(6)–(9) are evaluated system wide. Stage 3 imports the results
of PPF for each Tie switch location candidate and calculates
the NRC, NRS, NRA, and NRL across the network. Such
results are then used in a multi‐objective decision platform to
find the optimal solution.

Stage 4: Among various multi‐objective decision making
techniques, non‐dominated sorting genetic algorithm II
(NSGA‐II), with demonstrated efficacy and usability [34], is
employed. Utilising NSGA‐II results in a set of non‐dominant
solutions (Pareto optimal sets) for all objective functions. The
process starts with producing the first parent population
followed by ranking them based on the concept of non‐
dominance. Classic operators (crossover and mutation)
generate the children population to be used in combination
with parent population for the next generation of Pareto
solutions until a termination criterion is satisfied [34]. FSM is
next employed to chose between all optimal Pareto solutions

(optimal Tie switch locations) [35,36] considering a trade‐off
between all objectives introduced in Section 2.3. The FSM
approach is a mathematical expression tool that represents
human judgements [36]. This approach is pursued as different
user preferences and the decision maker (e.g. the utility)
judgements may otherwise render the decision framework
imprecise. The main advantages of employing the FSM
include [37]: (a) user‐defined targets for each objective (called
satisfaction levels), which are the inputs to the multi‐objective
decision making optimisation module, (b) the fuzzy‐based
decision making measures the certainty or uncertainty of
membership of an element of the set, which offers higher
flexibility to the electric utilities for selecting the desired ele-
ments, (c) the reasoning process has low computational
burden in case of applying the proposed framework in real‐
time or to large‐scale systems, (d) fuzzy‐based decision
making usually has a shorter development time than the
conventional methods and easier to implement in real world
practices. The step‐by‐step procedure of the FSM imple-
mentation is introduced as follows:

1. Membership function (MSF): MSF includes a set of attri-
butes to each objective function, indicating the significance
level assigned to a given objective by a decision maker. MSF
values are selected between zero and one, zero representing
the lowest priority and one the highest. For instance, in a
minimisation problem, the MSF equals to zero at the
summit point of the objective function and is equal to one
at its minimum. The linear MSF utilised in here is expressed
in Equation (25).

F I GURE 4 The overall architecture of the proposed multi‐objective decision platform for Tie switch placement in power distribution networks
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μf iðXÞ ¼

0 if f iðXÞ > f maxi

f maxi − f iðXÞ
f maxi − f mini

if f mini ≤ f iðXÞ ≤ f maxi

1 if f iðXÞ < f mini

8
>>>>>><

>>>>>>:

ð39Þ

2. Decision maker: The final decision is made considering the
user‐defined satisfaction levels for each MSF as indicated in
Equation (26). This optimisation minimises the τ‐norm
deviations from the designated satisfaction levels consid-
ering the MSF of all solutions.

min
X∈SolutionSet

∑
i∈R

∣μdi � μf iðXÞ∣
τ

� �

τ ∈ f1;∞g ð40Þ

4 | CASE STUDY AND EVALUATION
RESULTS

In order to showcase the efficacy of the proposed multi‐
objective decision making framework, the IEEE 33‐bus test
system with network data (distribution line impedances, load
profiles, and generation details) taken from Reference [38] is
selected as the first test case. All the proposed metrics are
evaluated in per‐unit values (i.e. unit‐less). A major HILP event
is simulated as graphically illustrated in Figure 5. We aim to
study such extreme scenarios to demonstrate how the system
resilience can be improved by grid hardening planning solu-
tions for optimal allocation of Tie switches across the network
and with various customisable risk appetites. The results in this
section are presented in two main categories: first, single‐
objective calculations of the objectives are demonstrated; this is
followed by the proposed multi‐objective approach to finalise
the decision making outcome.

4.1 | Single‐objective solutions for tie switch
placement and discussions

This sub‐section describes the details of the studied HILP
event and the possible Tie switch placement candidates based
on each individual objective function defined in Section 2.3
for effective restoration. Figure 5 displays different zones in
the network where facing a simulated HILP event. Nodes
7–10 highlighted in red (Zone 2) are affected by the HILP
event and nodes 11–18 coloured in blue (Zone 3) are the
restorable sections of the network. Zone 3 could be
re‐energised through a created path by closing a Tie switch to
be installed in one of the candidate locations (green‐dotted
lines). While the presented decision making framework is
generic enough to be applied to any HILP scenario with
different spatiotemporal characteristics and severity levels, it
finds 96 candidate locations for a Tie switch placement for

the designed HILP scenario in this paper. The connection
nodes of these Tie switch location candidates are demon-
strated in the first column of Table 2 as ‘Potential Tie Switch
Locations’. The grey zone in Figure 5 represents the unaf-
fected section of the feeder, which would be used as the main
restoration resource.

The k‐PEM‐based PPF runs for each Tie switch loca-
tion to achieve the corresponding system profile following
the plan implementation. Figure 6 displays the voltage
profile in the test system subject to black nodes (Node 7–
10) for all possible restoration plans (i.e. the 96 Tie switch
placements). It could be observed from Figure 6 that Nodes
7–10 remain black due to the HILP outage scenario while
Nodes 11–18 are restored within various Tie switch
connection plans. Note that based on the sequential relay
coordination and operation of the protection devices in the
distribution feeder, the designed restoration process is se-
lective, meaning that either the entire healthy part of the
faulty feeder or a portion of it are considered for restoration
through the suggested reconfiguration plans. In other words,
the protection devices have isolated the faulty segments of
the feeder following the HILP incident and each non‐faulty
segment could be restored by (1) closing the corresponding
line breakers and (2) closing the potential Tie switch in each
restoration plan.

Each resilience metric is evaluated at the nodal level for
each Tie switch placement scenario and summed over the
entire feeder for system‐wide performance analysis. Table 2
presents the results corresponding to each individual objective
function defined in Section 2.3. The last column of this table
illustrates the results of single‐objective Tie switch placement,
indicating the objective function which is optimised by the Tie
switch connection between the nodes listed in the first column
of this table. Since the critical loads covered in multiple
restoration plans (Tie switch locations) could be the same,
there are multiple solutions for considering NRC solely. Set of
single‐objective solutions includes all the Tie switch locations
where one of the following conditions is satisfied: NRC is
maximised (multiple solutions), or NRS is minimised
(connection 28,11), or NRA is maximised (connections 18,19
and 26,18), or NRL is minimised (connection 26,11).

F I GURE 5 Single‐feeder network affected by an HILP event
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TABLE 2 Single‐objective results based on per unit calculations

Potential Tie Switch
Location (Target Nodes) NRC NRS NRA NRL

Optimal
for

11,19 15.309 4.667 0.621 5.674

11,20 15.309 4.667 0.621 5.674

11,21 15.309 4.667 0.621 5.674

11,22 15.309 4.667 0.621 5.674

12,19 16.265 5.969 0.977 6.066

12,20 16.265 5.969 0.977 6.066

12,21 16.265 5.969 0.977 6.066

12,22 16.265 5.969 0.977 6.066

13,19 16.712 6.686 0.784 6.188

13,20 16.712 6.686 0.784 6.188

13,21 16.712 6.686 0.784 6.188

13,22 16.712 6.686 0.784 6.188

14,19 17.238 7.431 0.630 6.059

14,20 17.238 7.431 0.630 6.059

14,21 17.238 7.431 0.630 6.059

14,22 17.238 7.431 0.630 6.059

15,19 18.457 8.632 1.118 6.577

15,20 18.457 8.632 1.118 6.577

15,21 18.457 8.632 1.118 6.577

15,22 18.457 8.632 1.118 6.577

16,19 19.255 9.576 1.162 6.403

16,20 19.255 9.576 1.162 6.403

16,21 19.255 9.576 1.162 6.403

16,22 19.255 9.576 1.162 6.403

17,19 20.007 10.293 1.158 6.213

17,20 20.007 10.293 1.158 6.213

17,21 20.007 10.293 1.158 6.213

17,22 20.007 10.293 1.158 6.213

18,19 21.383 11.502 1.889 6.483 NRC,
NRA

18,20 21.383 11.502 1.889 6.483 NRC

18,21 21.383 11.502 1.889 6.483 NRC

18,22 21.383 11.502 1.889 6.483 NRC

26,11 15.725 4.872 1.037 3.747 NRL

26,12 16.377 5.844 1.089 4.021

26,13 17.165 6.933 1.237 4.719

26,14 17.932 8.037 1.324 4.994

26,15 18.197 8.598 0.858 4.910

26,16 18.842 9.027 0.749 5.048

26,17 20.196 10.265 1.347 5.749

TAB LE 2 (Continued)

Potential Tie Switch
Location (Target Nodes) NRC NRS NRA NRL

Optimal
for

26,18 20.971 11.133 1.477 5.594 NRC,
NRA

27,11 15.229 4.471 0.506 3.367

27,12 15.719 5.225 0.387 3.460

27,13 17.182 6.914 1.199 4.812

27,14 17.528 7.463 0.848 4.724

27,15 18.177 8.383 0.741 5.012

27,16 19.127 9.459 0.891 5.293

27,17 19.806 9.846 0.725 5.365

27,18 21.346 11.345 1.397 6.030 NRC

28,11 15.755 4.826 1.002 4.403 NRS

28,12 15.780 5.847 0.413 3.901

28,13 16.618 6.387 0.592 4.564

28,14 17.116 7.146 0.382 4.512

28,15 18.413 9.163 0.908 5.214

28,16 18.971 8.962 0.640 5.309

28,17 20.628 10.548 1.407 6.254

28,18 21.369 11.561 1.193 6.038 NRC

29,11 15.960 5.595 1.183 5.011

29,12 16.261 5.907 0.865 4.743

29,13 16.472 6.453 0.412 4.651

29,14 18.002 8.179 1.226 5.572

29,15 18.765 9.024 1.208 5.785

29,16 19.528 9.847 1.129 5.827

29,17 20.188 10.271 0.874 5.801

29,18 20.917 11.208 0.604 5.510 NRC

30,11 15.210 4.850 0.413 4.522

30,12 16.162 6.346 0.743 4.896

30,13 16.650 6.865 0.562 4.995

Potential Tie switch
Location (Target nodes) NRC NRS NRA NRL

Optimal
for

30,14 17.899 8.360 1.089 5.568

30,15 18.789 9.502 1.191 5.778

30,16 19.047 9.252 0.597 5.428

30,17 20.208 10.656 0.828 5.736

30,18 21.272 11.504 0.868 5.906 NRC

31,11 15.198 5.100 0.383 5.112

31,12 16.679 6.268 1.239 5.781

31,13 17.306 7.325 1.195 5.980

31,14 17.204 7.430 0.366 5.135
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The statistical comparison of the proposed indices is
tabulated in Table 3. NRC varies between 15.2 and 21.72 with
multiple candidates capable of providing a solution for
improving criticality covered in the restoration plan. NRS
ranges between 4.47 and 11.62 with mean value of 8.20, which
includes candidates with strong resourcefulness. NRA changes
between 0.35 and 1.89 with multiple solutions with a reason-
able restorability. NRL ranges between 3.37 and 6.58 with
candidates for minimum losses in the restoration.

The single‐objective optimisation in this paper has ach-
ieved a wide range of restorative loss reduction, or restorative
capacity enhancement. For instance, the reduction achieved in
Reference [39] for a 52‐bus system is 5.8%, while the range of
restoration losses in single‐objective solutions for NRL in this
paper varies in a higher range (changing from 3.06 p.u to
6.57 p.u—53.4% reduction between the worst and the best Tie
location candidate). The same applies to the range of restor-
ability achieved in this paper, with a high range between 0.2 p.u
to 1.36 p.u (85.2% enhancement between the worst and the
best Tie location candidates), while in Reference [40], the
restorative capacity enhancement for the IEEE 118‐bus test
system is limited to 4.26%. Critical load restoration has been
considered as a single‐objective optimisation problem in
Reference [41] on a 1069‐bus test system. Improvement of
critical load restoration in Reference [41] heavily relies on the
number of Microgrids connected to the restoration paths.
Therefore, the outcome of the optimisation problem is limited
to eight restoration paths including four critical loads, while the
proposed single‐objective optimisation in this paper for NRC
can cover widespread range of critical loads distributed in a
larger area of the network. This is achieved by considering 96
restoration paths for IEEE 33‐bus system to find the optimal
location of Tie switches for maximised coverage of the node
criticality.

4.2 | Fuzzy satisfying method‐based multi‐
objective decision making

The proposed objective functions are jointly taken into ac-
count in order to achieve a final optimal solution. As there is
no unique solution for a multi‐objective problem, the FSM
fulfils an objective judgement within a set of optimal Pareto
solutions to achieve a trade‐off and differentiate the Tie switch
placement candidates in the optimal Pareto front [34,42]. The
satisfaction levels (desired reference values) for each objective
function should be determined by the decision maker (e.g.
electric utility). The final results on the optimal allocation of
the Tie switches are achieved following the FSM process with
various satisfaction levels (see Table 4). From the numerical
results presented in Table 4, it could be inferred that the final
optimal solution relies heavily on the user‐defined satisfaction
levels (μd1 to μd4) selected for each objective function.There
are two objective functions to be minimised—system‐wide

TAB LE 2 (Continued)

Potential Tie switch
Location (Target nodes) NRC NRS NRA NRL

Optimal
for

31,15 18.636 9.120 1.006 5.775

31,16 19.370 9.988 0.881 5.707

31,17 20.567 10.371 1.137 6.332

31,18 21.719 11.618 1.250 6.404 NRC

32,11 16.029 5.806 1.199 6.060

32,12 16.237 5.941 0.780 5.490

32,13 17.108 7.576 0.977 5.939

32,14 17.724 8.215 0.864 5.729

32,15 18.590 9.219 0.934 5.747

32,16 19.038 9.602 0.517 5.420

32,17 20.517 10.917 1.048 6.088

32,18 21.344 11.071 0.826 6.195 NRC

33,11 15.577 5.286 0.734 5.783

33,12 16.124 6.119 0.652 5.562

33,13 16.880 7.409 0.732 5.831

33,14 17.763 7.939 0.883 5.858

33,15 18.208 8.351 0.530 5.486

33,16 18.895 9.569 0.348 5.278

33,17 19.936 10.237 0.436 5.555

33,18 21.314 11.301 0.758 6.070 NRC

Abbreviations: NRC, nodal restoration criticality; NRC, nodal robustness; NRA, nodal
restorability; NRL, nodal restoration losses.

F I GURE 6 Voltage profile in the IEEE 33‐bus system for 96 Tie
switch locations during the restoration process

TABLE 3 Statistical comparison of resilience metrics for 33‐bus test
system

Performance index NRC NRS NRA NRL

Minimum 15.20 4.47 0.35 3.37

Maximum 21.72 11.62 1.89 6.58

Mean 18.15 8.20 0.93 5.62

Standard deviation 1.90 2.11 0.34 0.72

Abbreviations: NRC, nodal restoration criticality; NRC, nodal robustness; NRA, nodal
restorability; NRL, nodal restoration losses.
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performance degradation NRS (f1 associated with μd1) and
restoration losses NRL (f2 associated with μd2)—and two
objective functions to be maximised—system‐wide restor-
ability NRA (f3 associated with μd3) and restoration criticality
NRC (f4 associated with μd4). As a consequence, higher satis-
faction levels for f1 and f2 (μd1 and μd2) results in these two
objective functions to be more dominant and higher satisfac-
tion levels for f3 and f4 (μd3 and μd4) are desirable in the final
decision. To provide the reader with a better understanding of
the proposed decision making platform, the following example
is presented: if the user decides on μd3 ¼ 1 and μd1, μd2,
μd4 ¼ 0, the system wide restorability (NRA) is the only
objective function reflected in the final decision. In this
particular case, μd3 is set to the highest value which is not
desired for this objective function (NRA) and the decision
would be to connect Nodes 26–18 with a Tie switch place-
ment, which restores the lowest amount of loads. The user can
tune the satisfaction levels and objective functions to meet the
desired decision requirements.

Figure 7 demonstrates the NRS in the network under test
for the optimal solution with satisfaction levels of μd1 ¼ 0.8,
μd2 ¼ 0.8, μd3 ¼ 1, μd4 ¼ 0.6. As reported in Table 4, such
satisfaction levels result in a connection between Nodes 26–14
as the most optimal location for the Tie switch. The colours in
Figure 7 depict the NRS, where a lower nodal performance
deviation reflects a higher robustness (dark green). The HILP‐

heavily‐affected nodes have the highest performance de-
viations and are dressed by colours in red.

4.3 | Applicability on larger networks

In order to verify the applicability of the proposed framework
on larger networks, this subsection provides the results when
the proposed approach is implemented on the IEEE‐69 bus
test system. The network under test is depicted in Figure 8 with
an HILP scenario affecting Nodes 14‐to‐21.

The proposed framework from PPF to index calculation
is conducted on the IEEE 69‐bus system and the results are
demonstrated in Figure 9. Figure 9(a)–9(d) illustrate the
criticality covered by the restoration plans, system‐wide
robustness, restorability, and restoration losses, for each Tie
switch placement candidate, respectively. The statistical
comparison of these indices is tabulated in Table 5. It could
be observed from Figure 9(a) that the NRC varies from 12.04
to 15.84 with some candidates providing acceptable demand
criticality covered by the restoration process. Figure 9(b) and
9(c) illustrate the system robustness and restorability with
multiple candidates capable of providing a reasonable solu-
tion for maximum amount of loads to be restored and
minimum difference with the pre‐event system profile.
Figure 9(d) introduces the candidates with relatively low

TABLE 4 Final resilience‐oriented allocation of tie switches in 33‐bus
test system

Satisfaction Levels Objective function value
Final Tie switch
locationμd1 μd2 μd3 μd4 f1 f2 f3 f4

0.8 0.8 1 0.6 8.037 4.994 1.324 17.932 26‐14

0.8 0.8 0.8 0.8 9.027 5.048 0.749 18.842 26‐16

1 1 0.6 0.6 6.933 4.719 1.231 17.165 26‐13

0.6 0.6 0.6 0.4 8.598 4.910 0.858 18.197 26‐15

F I GURE 8 Case study with larger number of nodes—IEEE 69‐bus
test system

F I GURE 7 Nodal robustness for the optimal planning scenario with a
Tie switch placed between Nodes 26–14
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restoration losses with system‐wide NRL ranging between
6.05 and 11.77 per unit. The same FSM multi‐objective
optimisation approach is implemented in the IEEE 69‐bus
test system as well. Satisfaction levels are user defined and
could be tuned depending on the priorities of the electric
utilities for the proposed indices. However, for the sake of
consistency in the paper and in order to be able to compare
the results with those of the IEEE 33‐bus test system, the
same satisfaction levels (μ1‐to‐μ4) are selected.

The final results of the multi‐objective optimisation and
the satisfaction levels are summarised in Table 6. Satisfaction
levels in the first row of the table give more importance to
restorability (μ3 ¼ 1) and less importance to restoration losses
(μ3 ¼ 0.6) with moderate satisfaction levels for criticality and

robustness. Therefore, the optimal connection by the frame-
work resulted in 49‐22 to cover maximum loads. Satisfaction
levels in the second row of Table 6 are distributed equally at a
moderate level (μ1 ¼ μ2 ¼ μ3 ¼ μ4 ¼ 0.8). This has resulted
in Tie switch connection between Nodes 52‐23, where there
is a trade off between all restoration losses, number of
restored loads, criticality, and robustness. The third row in
Table 6 represents the scenario of allocating less priority to
restoration losses and restorability while robustness and crit-
icality covered in restoration plan are given full attention. This
scenario has led to a connection between 46‐24. Finally, in
the last row of the table, lower satisfaction levels are applied
to all proposed indices with lowest attention (among all
satisfaction levels) allocated to the restoration losses

F I GURE 9 System‐wide performance evaluation of the IEEE 69‐bus test system for Tie switch placement candidates considering: (a) load criticality,
(b) robustness, (c) restorability, and (d) restoration losses

TABLE 5 Statistical comparison of resilience metrics in IEEE 69‐bus
test system

Performance Index NRC NRS NRA NRL

Minimum 12.04 5.18 2.62 6.05

Maximum 15.84 15.99 3.12 11.77

Mean 14.19 9.81 2.83 9.27

Standard deviation 1.51 2.31 0.23 1.43

Abbreviations: NRC, nodal restoration criticality; NRC, nodal robustness; NRA, nodal
restorability; NRL, nodal restoration losses.

TABLE 6 Final resilience‐oriented allocation of the Tie switch for 69‐
bus system

Satisfaction levels Objective function value
Final Tie switch
locationμd1 μd2 μd3 μd4 f1 f2 f3 f4

0.8 0.8 1 0.6 13.689 6.612 3.125 8.851 49‐22

0.8 0.8 0.8 0.8 12.045 6.894 2.875 7.371 52‐23

1 1 0.6 0.6 13.689 6.112 2.750 8.651 46‐24

0.6 0.6 0.6 0.4 14.954 9.998 2.875 9.512 50‐26
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(μ4 ¼ 0.4). This condition has resulted in Tie connection of
Nodes 50‐26.

5 | DISCUSSION

It must be noted that this work has focussed on the planning
phase where the planning authorities have a limited budget for
installation of Tie switches in the distribution network. The
indices calculated for every possible location of Tie switches in
the network could be ranked (ascending for NRC and NRA
and descending for NRS and NRL). Depending on the
available resources and the number of the Tie switches, which
are decided to be installed by the electric utility, the highest
ranked indices could be selected as the input to the FSM al-
gorithm. The proposed analytics are generic enough to
accommodate any budget considerations and any number of
Tie switches to be installed for structural hardening and
resilience. Here are the presumptions for the developed
decision making platform:

� The proposed framework in this paper focuses on radially
operated power distribution networks. Therefore, the
restoration plans considered here are fully achieved by
network reconfiguration through operation of Tie switches
between the adjacent feeders, while preserving the default
generator dispatch schedules. Hence, generator synchroni-
sation challenges during the restoration process (especially
during cold load pickup) are out of the scope of this
framework. The main goal is to optimise the location of the
Tie switches as a part of the network hardening planning
schemes.

� The metrics, objective functions, and constraints in the
proposed model are developed with regards to the
balanced distribution networks. However, the framework is
generic enough and can be applied to unbalanced distri-
bution systems with the following adjustments: (a) Active
power losses in unbalanced distribution networks will be
increased due to higher active losses of the distribution
transformers. Therefore, a safety margin needs to be
added to the resilience metric related to the restoration
losses. (b) All constraints relevant to nodal voltage
robustness, which compare the voltage profiles before and
following a major HILP disturbance, need to consider
three‐phase voltage unbalance conditions caused by un-
balanced loads. In other words, power balance equations in
this work have to be modified to encompass single‐phase
load balance models as well. (c) All power flow equations
must be modified to contain the current flow in neutral
points of the distribution networks. In addition, a new
constraint is required to limit the current flow in the
neutral points to avoid neutral over‐current conditions. An
example linear power flow model for three‐phase unbal-
anced systems is proposed in Reference [43]. (d) When
considering the contributions from Distributed Energy
Resources (DERs) under unbalanced operation, conditions

are subjected to various constraints (e.g. current unbalance
constraint, ramping rate constraint, and output limit
constraint) [43]. Therefore, additional challenges may exist
for problem formulation under a multi‐objective optimi-
sation setting.

The computational efficiency of the framework has not
been a major concern in this work, as it focuses on planning
phase; however, it is assessed by the time that CPU needs to
run the algorithm. The average CPU run time at each core
for completion of the algorithm in MATLAB is reported in
Table 7 for different scenarios.

6 | CONCLUSION

In this paper, a multi‐objective decision making framework
for resilience‐oriented optimisation and planning in power
distribution grids is proposed. This framework employs a
k‐PEM‐based PPF and a FSM to find out the desirable
reconfiguration plan by optimally allocating the Tie switches
across the network for maximised preparedness against
HILP events. In order to characterise the optimal restoration
plan, several resilience features are introduced and quantified
at both nodal and system levels. This includes proposed
metrics on system robustness, load criticality covered by a
restoration plan, restoration losses, and recovered capacity.
A dynamic admittance matrix is used as the input to the
k‐PEM based PPF, which allows the Tie switches to move
between all possible pairs of nodes to build a complete set of
restoration scenarios. The generated set of HILP restoration
scenarios will then be assessed by calculation of the pro-
posed resilience metrics to find out the optimal location of
the Tie switches.

Effectiveness of the proposed framework, which aims to
provide the distribution utilities with visions for network
hardening planning against HILP events, is tested on the
IEEE 33‐bus test system, and a detailed discussion on the
numerical results was provided. In order to verify applicability
of the proposed framework on larger networks, the frame-
work is tested on the IEEE 69‐bus test system, and the
results were thoroughly discussed. Numerical results prove the
effectiveness of the proposed platform on both small scale
and large scale systems with benefits for end users and
utilities.

Future research and development efforts could be directed
towards application of the developed decision making
platform in highly meshed and unbalanced power distribution

TABLE 7 Computational performance of the proposed framework in
seconds

IEEE 33 Bus system IEEE 69 Bus system

Single‐objective 00:41.34 01:11.85

Multi‐objective 00:59.11 01:48.97
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networks. This requires modifications in the proposed resil-
ience metrics and power flow equations considered in this
work.
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