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Abstract: Recently, power system operators have initiated procurement of a new service in electricity markets named flexible
ramping product (FRP). With the main goal of enhancing the grid flexibility, this product can provide a remarkable opportunity for
an enhanced short-term profitability. Energy storage systems (ESSs) with high ramping capability can leverage their profitability
when properly participating in this market. This study introduces a stochastic optimisation framework for participation of ESSs in
the FRP market. The proposed model formulates the optimal bidding strategy of ESSs considering the real-time energy, flexible
ramp-up and ramp-down marginal price signals and the associated uncertainties. In addition, as the market participants cannot
directly submit bids for the FRP, the corresponding energy bidding adjustments required to award the proper FRP amounts are
elaborated. The mathematical model is linearised and its application in real-time market is investigated. The proposed
framework is numerically analysed through which its effectiveness on enhancing the ESS profitability in the real-time electricity
markets is verified.

 Nomenclature
Indices

s set of scenarios
t set of market time-intervals
m set indicating the slope of each block in the piece-wise

linearised flow-power function of ESS
rt real-time market
fru flexible ramping up
frd flexible ramping down
de,ch discharging and charging modes
u,d superscripts denoting increase and decrease

Parameters

λe forecasted energy price
λfru, λfrd forecasted FRU and FRD prices
Ωs probability of scenario s
pr f probability of ESS failure
δe penalty of not providing the awarded power output
δfru, δfrd penalty of not providing FRU and FRD
Cch start up cost of ESS in charging mode
P power level traded in DAM
P, P minimum and maximum power levels
q, q minimum and maximum water flow levels
qm maximum water flow of block m in the piece-wise

linearised flow-power function of ESS
SOC, SOC minimum and maximum state of charge of ESS
SOCT

da state of charge at T based on the energy trade in DAM

lm slope of block m in the piece-wise linearised flow-
power function

ξ round-trip efficiency of the ESS
α confidence level for which the profit is higher than ϕ
β factor of risk aversion

Ide, Ich binaries indicating the state of operation of ESS in
DAM (1: yes, 0:no)

Decision variables

Δprt change of power output in RTM
p power output of the ESS
ru,rd desired flexible ramping up and flexible ramping

down levels
rude, rdde provided flexible ramping up and down in discharging

mode
ruch, rdch flexible ramping up and down in charging mode
cuch start up cost incurred in RTM in charging mode
q water flow of the ESS
qm water flow of block m in the piece-wise linearised

flow-power function of ESS
soc state of charge of the ESS
Πs expected profit of scenario s
ϕ auxiliary variable for CVaR
ψs auxiliary variable indicating the excess of profit over

ϕ in scenario s
CVaR critical value at risk
yde, ych binaries indicating the state of operation of ESS in

RTM (1: yes, 0:no)
xde, u, xde, d binaries indicating increase and decrease in

discharging power output in RTM (1: yes, 0:no)
xch, u, xch, d binaries indicating increase and decrease in charging

power output in RTM (1: yes, 0:no)

1 Introduction
Intermittency and variability in renewable generations may impose
serious challenges in modern power systems, precise solutions to
which should be sought or it may otherwise lead to immense
supply curtailments, load outages and market price spikes [1, 2].
This calls for new strategies and practical mechanisms for secured
operation of the power grids with massive integration of
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renewables; in particular, additional flexibility should be planned
and introduced to different sectors in the grid, so the system
operators can ensure that the supply is continuously able to follow
and meet the stochastic demand [3–5]. Research efforts on efficient
technologies and mechanisms to improve system flexibility have
seen a tremendous growth in recent years. Among different
technologies, energy storage systems (ESSs) bring about potentials
for significant operational flexibility and have been realised as an
effective solution to overcome the intermittency concerns of
renewable generations [6, 7]. Among the prominent advantages of
such technologies in modern power systems, one can highlight the
ESS ability to smoothen the energy market prices, defer
transmission line expansion decisions, enhance the system
reliability and resilience and so on [8, 9].

The ESSs may be owned either by system operators or private
investors. In the former, the ESSs are primarily employed for cost-
effective operations and enhanced system-wide reliability [10, 11].
In the latter, however, investors are impressively attracted by the
profitability of ESS solutions in electric industry, the increment of
which depends on the optimal site and size of the ESS in the
system [12, 13]. Dvorkin et al. [12] have presented a bi-level
optimisation model to determine the optimal site and size of the
ESSs in the grid, the solutions to which not only reduce the
investment costs, but also lead to an improved system operating
costs. In addition to the optimal sizing and siting of ESS solutions,
the profitability is also derived by the precise forecasts of market
behaviour and bidding strategies. The notable works in this area are
[14–20]. A bidding strategy for battery ESSs is suggested in [14] to
simultaneously participate in day-ahead energy, spinning reserve
and regulation markets. Robust optimisation is applied to model
the market prices and the energy procurement in reserve and
regulation services. Nojavan et al. [15] have assessed the
profitability of compressed air energy storage in the day-ahead and
real-time energy arbitrage markets. They proposed a stochastic
optimisation for the day-ahead market (DAM) and a robust model
for the real-time market (RTM). In [16], the authors have proposed
a demand response participation framework for wind power
combined with energy storage aiming at leveraging the joint
profitability. The optimal joint participation of solar power plant
and energy storage in energy and reserve markets is developed in
[17]. On this basis, the authors developed a model predictive
control approach considering the potential uncertainties, e.g. solar
power output and market prices.

Recently, a new market product named flexible ramping
product (FRP) is introduced in a number of modern electricity
markets, California ISO (CAISO) in particular, which aims to
enhancing the market flexibility. The FRP is essentially the energy
capacity of RTM players which is reserved to handle the stochastic
net-load (i.e. the demand minus intermittent supply) uncertainties
and variability in the next immediate time-interval [21–23]. Since
ESSs are considered among the fast-response flexible resources,
this product can bring about a significant opportunity to gain
higher economic gains and financial benefits, only if its unique
features are well understood and precise bidding strategies are
effectively established. Conversely, if the ESS owners as well as
the other market players do not make informed decisions to
participate in the FRP market, they may encounter financial losses.
In contrast with other market products (e.g. energy and ancillary
services), the bidding strategies in the FRP market would be more
complicated as the players may not submit economical bids. In
fact, the FRP marginal prices are determined according to the
marginal energy opportunity costs [23, 24].

In order to benefit from FRP market, Hu et al. [25] have
suggested a framework in which the ESS participates in the day-
ahead energy and FRP markets. Moreover, Wang et al. [26] have
proposed a bidding strategy for participation of microgrids in joint
day-ahead energy, reserve and FRP markets. However, these
studies do not consider the fact that FRP is a RTM product and is
not procured in the DAM. Also, they do not offer any economic
bidding strategy (amount along with the associated price) to award
the desired amounts of energy and FRP. Different from the past
research, this paper suggests an informed decision framework for
ESSs participation in the FRP market. The proposed linearised

mathematical model is centred on stochastic real-time price-based
unit commitment (PBUC) of the ESSs developed based on the real-
time energy, flexible ramp up (FRU), and flexible ramp down
(FRD) marginal price signals. This model is initialised with the
energy traded by the ESS in DAM and correspondingly determines
the optimal energy and FRP that maximise the ESS profits in RTM.
Furthermore, this paper suggests an effective bidding strategy for
the ESS participation in the RTM. Two case studies with and
without FRP mechanisms are investigated, the results of which
numerically demonstrate that the ESS profitability is significantly
higher in the case with FRP. In summary, the contributions of this
paper are presented as follows:

• A risk-averse two-stage stochastic PBUC optimisation
formulation for price-taker ESS participation in the RTM is
introduced in order to maximise the profitability in the FRP and
energy markets. Each scenario consists of different forecasted
real-time energy and FRP prices characterised by the
corresponding forecast error distribution functions. In order to
achieve a tractable optimisation model, a forward probability
distance scenario reduction algorithm is used whilst preserving
the stochastic characteristics of the original problem.
Furthermore, in order to limit the risks of profit loss, the ESS
may incur, a well-established risk aversion method named
conditional value at risk (CVaR) is implemented.

• As the market participants do not bid for FRP directly, a
modified energy bidding strategy to achieve a profitable ESS
participation in the RTM is introduced. This step utilises the
optimal amounts of energy, FRU and FRD determined by the
two-stage optimisation to set the ‘amount’ of each bidding level
and employs the associated price forecasts to set the ‘price’ of
each bidding level. Provided that the bidding levels are assessed
accurately, the ESS can be awarded optimised energy and FRP
when the ISO runs the market.

• The IEEE 118-bus test system is implemented to generate real-
time energy and FRP price scenarios based on the uncertainties
of load and renewable generation. The simulation results infer
the impressive efficiency of the suggested approach on the ESS
profitability.

The rest of the paper is organised as follows. In Section 2, the
concept of FRP, its application in RTM and the great opportunity it
provides for flexible units to increase their profits are described.
The linearised mathematical formulation of the proposed model is
presented in Section 3. The bidding strategy of ESS based on
energy and FRP price signals in order to maximise its profitability
is described in Section 4. The case study and numerical results are
investigated in Section 5 and eventually, the concluding remarks
are presented in Section 6.

2 Flexible ramping product in real-time market
2.1 Main procedures in real-time markets (RTM)

The RTM process is mainly implemented through real-time unit
commitment (RTUC) and real-time dispatch (RTD) procedures.
Both RTUC and RTD are multi-interval optimisation problems,
where only the outcome of the first time-interval optimisation is
critically requisite for market players and those of other intervals
are solely advisory to participants to schedule their resources
accordingly. The RTUC comprises of 15 min time-intervals and
can determine the unit commitment commands (on/off) for rapid-
start generating units, for which the minimum up and down timings
are less than the RTUC time horizon. The RTUC can also
determine the dispatch decisions for slower generating units. The
RTD is, however, a 5 min process in which only the market players'
dispatch profiles are issued. The RTUC market time-horizon is set
to include all the intervals until the end of the next hour. On this
basis, the market horizon alters from 60 to 105 min and the number
of intervals alters from 4 to 7 [21].
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2.2 Prime features of the flexible ramping product

The FRP is procured in both RTUC and RTD processes based on
the corresponding net-load forecast errors. In each optimisation
process, the ISO assures that the supply is able to meet the net-load
uncertainties in the next-immediate market time-interval. In
particular, the ISO evaluates, at time T, the net-load forecast
accuracy at T + 1 and the available ramping flexibility in response
to the forecast error (see Fig. 1). To be able to follow a large range
of net-load forecast error at T + 1, the ISO may reserve additional
ramping capacities (FRU for upward and FRD for downward) at
time T [27, 28]. 

The FRP is realised via reserving the energy capacity of the
RTM players. In other words, if the system ramping capability is
not sufficient, the ISO reserves additional ramping from the energy
capacity that players have submitted to the real-time energy
market. In this respect, the ISO compensates those players who
missed the chance to sell/buy energy in the market, but their energy
capacity is reserved for FRP. The opportunity cost corresponding to
this participation in energy market is paid to those players
providing FRP [29]. The energy opportunity cost is the difference
between the market clearing price (MCP) and the player's
submitted bid for energy. The highest opportunity cost for FRU
procurement is the FRU marginal price, while it is the FRD
marginal price for FRD procurement. All units providing FRU or
FRD are compensated according to the associated marginal prices
[29].

3 Mathematical formulation
3.1 Two-stage stochastic optimisation

Tailored to the pumped hydro storage (PHS) units, we propose a
mathematical model for ESS participation in the FRP market.
Since the ESSs are relatively small-sized compared to other market
participant such as thermal generating units, their energy and
ancillary services trades do not affect the energy locational
marginal prices. Hence, we consider the ESSs to be price-taker.
Note that although the operational constraints of the PHSs are
modelled here, the proposed framework is generic enough to
accommodate other types of ESSs by modifying the related
constraints. We assume that the ESS has participated in DAM and
the associated energy schedule is considered as the input to the
RTM. The ESS owner is seeking to maximise its profit in RTM
according to the forecasts of MCP, FRU and FRD marginal prices.
Thus, the objective function (C) in the proposed optimisation
model is

C = E(Πs) = max (Δt(Δp1
rtλ1

e + ru1λ1
fru + rd1λ1

frd

− pr1
f (p1δ1

e + ru1δ1
fru + rd1δ1

frd)) − cu1
de

+ ∑
s = 1

S
Ωs ∑

t = 2

T
Δt(Δps, t

rt λs, t
e + rus, tλs, t

fru + rds, tλs, t
frd

− prt
f (ps, tδt

e + rus, tδt
fru + rds, tδt

frd)) − cus, t
de

(1)

The proposed objective function is a two-stage problem, the
first stage of which determines the optimal energy, FRU and FRD
levels that may be awarded by participating in the first interval of
RTM. The second stage evaluates the estimated profit the ESS can
make in the next intervals of the RTM. Also, it is assumed that the
ESS has a perfect forecast of the price signals in the first stage.
Note that the optimisation time-horizon set by T is assumed to be
equal to the RTUC time-horizon which fluctuates between 4 and 7
upon the time (hour) and spans to the end of the next trading hour.
The proposed objective function is subject to the following
constraints.

The operating status of ESS in generation, consumption and
idle modes of operation are modelled in (2)

ys, t
de + ys, t

ch ≤ 1 ∀s, t (2)

The start-up cost constraints in ESS pumping mode are
enforced as follows:

cus, t
ch ≥ Cch(ys, t

ch − ys, t − 1
ch ) & cus, t

ch ≥ 0 ∀s, t (3)

The difference between the ESS output power in the RTM and
that in the same time-interval in DAM comes primarily from either
generation or consumption power level variations

Δps, t
rt = Δps, t

de, u − Δps, t
de, d − Δps, t

ch, u + Δps, t
ch, d ∀s, t (4)

The variables Δpde, u and Δpde, d stand for the increase or decrease
in power output in discharging mode in RTM. Likewise, Δpch, u and
Δpch, d show the same in charging mode. On this basis, the ESS
generating and consumption power level constraints in the RTM
are represented as follows:

ps, t
de = Pt

de + Δps, t
de, u − Δps, t

de, d ∀s, t (5)

ps, t
ch = Pt

ch + Δps, t
ch, u − Δps, t

ch, d ∀s, t (6)

Note that parameters Pde Pch indicate the traded discharging and
charging energies in DAM which is binding in RTM. The change
in the ESS output power in its generating state in RTM is limited
by the following constraints:

(1 − It
de)xs, t

de, uPde ≤ Δps, t
de, u ∀s, t (7)

Δps, t
de, u ≤ xs, t

de, u(Pde − Pt
de) ∀s, t (8)

0 ≤ Δps, t
de, d ≤ xs, t

de, dPt
de ∀s, t (9)

xs, t
de, u + xs, t

de, d ≤ 1 ∀s, t (10)

In which, xs, t
g, u and xs, t

g, d are the binaries indicating if the ESS decides
to increase or decrease its generating power output in the RTM (1:
yes, 0: no). According to (7), only if the ESS is not in its generation
mode in DAM (It

de = 0), Δps, t
de, u should be greater than the

minimum generating power (Pde). As in (8), the maximum increase
in the ESS output power is limited to the difference between
maximum accessible power and that traded in DAM at the same
time-interval (Pt

de). The maximum decrease in ESS generation
power is limited, in (9), to Pt

de. The auxiliary binaries xs, t
de, u and xs, t

de, d

are enforced in (10) to prevent the ESS generation level to decrease
and increase at the same time. In the case of an increment in the
ESS generation, xs, t

de, u will be equal to 1 and xs, t
de, d otherwise. Similar

constraints are enforced representing the ESS pumping state

(1 − It
ch)xs, t

ch, uPch ≤ Δps, t
ch, u ∀s, t (11)

Δps, t
ch, u ≤ xs, t

ch, u(Pch − Pt
ch) ∀s, t (12)

Fig. 1  FRP procurement according to net-load forecast errors [29]
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0 ≤ Δps, t
ch, d ≤ xs, t

ch, dPt
ch ∀s, t (13)

xs, t
ch, u + xs, t

ch, d ≤ 1 ∀s, t (14)

The ESSs can provide FRP in both generating and pumping
states, the constraints of which are suggested in the following:

rus, t = rus, t
de + rus, t

ch ∀s, t (15)

rds, t = rds, t
de + rds, t

ch ∀s, t (16)

ps, t
de + rus, t

de ≤ Pdeys, t + 1
de ∀s, t (17)

ps, t
de − rds, t

de ≥ Pdeys, t + 1
de ∀s, t (18)

ps, t
ch + rds, t

ch ≤ Pchys, t + 1
ch ∀s, t (19)

ps, t
ch − rus, t

ch ≥ Pchys, t + 1
ch ∀s, t (20)

In (15) and (16), the procured FRU and FRD are evaluated as the
summation of the respective amounts in ESS generating and
pumping modes. As enforced in (17)–(20), the FRU and FRD are
driven by the ESS functional mode at t + 1, their output power and
their lower and upper power limits. Based on (17), the maximum
FRU in discharging mode is limited to the difference between the
maximum discharging power at t+1 and the output power at t.
According to (18), the FRD in discharging mode is limited to
discharging power output minus the associated minimum power
limit. Likewise, (19) and (20) are enforced for charging mode,
except the fact that FRU is procured by a decrease in the output
power and FRD is procured by an increase in the output power.

Based on [30], the linearised relationship between the PHS
output power and the water flow is presented in the following:

qdeys, t
de ≤ qs, t

de ≤ qdeys, t
de ∀s, t (21)

qs, t
de = qdeys, t

de + ∑
m = 1

M
qs, t

de, m ∀s, t (22)

0 ≤ qs, t
de, m ≤ q̄de, m ∀s, t (23)

ps, t
de = Pdeys, t

de + ξ ∑
m = 1

M
qs, t

de, mlde, m ∀s, t (24)

qchys, t
ch ≤ qs, t

ch ≤ qchys, t
ch ∀s, t (25)

qs, t
ch = qchys, t

ch + ∑
m = 1

M
qs, t

ch, m ∀s, t (26)

0 ≤ qs, t
ch, m ≤ q̄ch, m ∀s, t (27)

ps, t
ch = Pchys, t

ch + 1
ξ ∑

m = 1

M
qs, t

ch, mlch, m ∀s, t (28)

Equation (21) ensures the discharging water flow within its limits.
In (22), the total water flow in discharging mode is the summation
of the water flow amounts of each block m in the linear piece-wise
flow-power function which are limited to their maximum values in
(23). The linearised relationship of the power and water flow in
discharging mode is given in (24). Likewise, the corresponding
constraints for the charging mode are set in (25)–(28).

The limits on the stored energy and the water flow are enforced
in the following equations:

socs, t − socs, t − 1 = (qs, t − 1
ch − qs, t − 1

de )/Δt ∀s, t (29)

SOC ≤ socs, t ≤ SOC ∀s, t (30)

Water flow rates are divided by Δt in (29) as the real-time RTUC
and RTD are run in 15 and 5 min time-intervals, respectively.

In order to ensure that there is always sufficient stored energy
and the ESS is able to provide the scheduled energy at DAM, it is
assumed that the stored energy at time T in RTM optimisation is
greater than equal to its value at the same time-interval in DAM.
This is enforced in the optimisation model in the following
equation:

socs, T ≥ SOCT
da (31)

3.2 Risk-aversion measure

The risk-aversion measure CVaR is implemented in order to limit
the decision-making risks. For a scenario-based stochastic
optimisation model, the CVaR can be evaluated by the following
optimisation:

CVaR = min ϕ + 1
1 − α ∑

s = 1

S
Ωsψs (32)

Subject to:

ϕ − Πs ≤ ψs ∀s (33)

ψs ≥ 0 ∀s (34)

Here, α sets the confidence level for which the profit will be
higher than the value at risk ϕ. In other words, the probability that
the objective function is greater than or equal to ϕ is lower than or
equal to (1 − α) × 100%. Besides, ψs indicates the excess of profit
over ϕ in scenario s.

In order to have control over the risk factor of the optimisation,
the risk measure (32) subject to (33), (34) can be embedded in (1)
using the coefficient β (0 ≤ β ≤ 1) as follows:

C = max (1 − β) . Πs − β . CVaR =

max (1 − β) . Πs − β . ϕ + 1
1 − α ∑

s = 1

S
Ωsψs

(35)

The objective function (35) along with constraints (2)–(31),
(33) and (34) comprise the stochastic optimisation we propose for
the participation of ESSs in the real-time energy and FRP market.
The optimal values of the decision variables {Δp1

rt, ru1,
rd1, y1

de, y1
ch} along with the RTM price forecasts {λ1

e, λ1
fru, λ1

frd}
comprise the inputs needed for the proposed bidding strategy in
Section 4.

4 Proposed bidding strategy for FRP
The suggested real-time PBUC optimisation for ESSs participation
in RTM, presented in Section 3, only specifies the optimal change
in power as well as the FRU and FRD values based on the
corresponding forecasted price signals. The ESSs, however, should
decide about their bidding strategies for effective and profitable
participation in different markets. This participation strategy is
highly dependent upon the bids that the ESS owner submits to the
market. Market players are, however, not able to submit bids in
FRP and the ISO determines the FRU and FRD allocated to the
players according to their energy opportunity cost. This makes the
ESSs bidding strategy a complicated challenge. On this basis, in
this section, a method is proposed to set the price of each level in
the energy bid with the aim of optimal energy and FRP
procurement using the bidding input obtained from the
optimisation proposed in Section 3.

Here is the procedure that the ISO follows to allocate the FRU
and FRD to market participants: at each point in time, the ISO
specifies the required FRU and FRD according to the net-load
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forecast error function and values [29]. The ISO then determines
the FRP for market participants based on their submitted energy
capacity and relevant prices. In fact, the ISO reserves the energy
capacity of market player to procure the required FRP. The
following significant considerations are critical to success of this
mechanism [21, 29]:

• As the main target, the ISO should run the market to minimise
the system operational costs.

• The conventional RTM participants submit hourly bids to the
market while the ISO runs a multi-interval market process where
the decision of the first interval is binding. For the sake of
profitability and flexibility to manage the impacts of
uncertainties on the price signals and ESS resources, it is
assumed that the ESSs have the option to modify their bids at
each RTM step.

• If the system ramping flexibility is not sufficient to respond to
the forecasted net-load uncertainties, the ISO will procure
additional FRP by reserving the players' energy capacity, which
is the power generation or consumption level that the player has
specified in its submitted bid to RTM. This continues until the
FRU and FRD constraints are satisfied.

• The ISO should pay FRU and FRD procurement costs to the
market players according to their energy opportunity costs. The
maximum opportunity cost for providing FRU and FRD will be
their respective marginal prices.

Providing the FRP with minimum operation costs will help
reserving the energy capacity of the market players whose bids are
the closest to the MCP. In fact, if the energy capacity of the less-
expensive units is reserved for FRP, more expensive units will be
called to provide the required energy, resulting in a higher system
operation cost. Furthermore, FRP provision by more expensive
units will minimise the energy opportunity costs and, accordingly,
the FRP marginal prices. The FRP process continues by reserving
the energy capacity of the players for which the difference between
their bids and MCP is greater. Hence, all the submitted generation
bids less than the difference between the MCP and FRP marginal
price will be considered for energy generation and the bids greater
than MCP plus FRP marginal price will be accounted for energy
consumption. Besides, the submitted generation bids between MCP
and MCP minus FRP marginal price and those for energy
consumption between MCP and MCP plus FRP marginal price will
be reserved for the FRP services.

To achieve an optimal energy and FRP values in the market, the
ESS should submit an energy bid following the real-time PBUC
optimisation which should comprise at least two price levels, one
for energy and the other for FRP. According to Figs. 2 and 3, the
ESS bid is submitted according to its desired change in its output
power level (Δpt

rt) which could be divided into two different states: 

• State I (Δpt
rt ≥ 0): This state indicates an increase in the

generation or a decrease in consuming power. According to Fig.
2, the ESS should submit one bid to sell its energy to the market
with a power level equal to Δpt

rt and a price less than λe − λfru.
To ensure an FRU, it should submit a bid to sell its energy with
power level equal to the desired FRU and a price between λe and
λe − λfru. Such a bid ensures the ESS ability to provide ramp-up
services either by increasing its generating power or decreasing
its consumption power. Finally to enable an FRD, the ESS
should submit a bid to buy energy with power level equal to the
desired FRD and a price between λe and λe + λfrd. This bid
indicates the ESS ability to provide ramp-down capacity by
decreasing its generating power or increasing its consumption
level.

• State II (Δpt
rt ≤ 0): This state represents a decrease in ESS

power generation or an increase in its power consumption level.
According to Fig. 3, the bid should be greater than λe + λfrd with
the energy capacity equal to −Δpt

rt in order to approach an
optimal energy purchase. The FRU will be enabled if the ESS
submits a bid with power level equal to the desired FRU value
and a price between λe and λe − λfru. Similarly, the ESS should
submit another bid with a power level equal to FRD and a price
between λe and λe + λfrd, if FRD is to be gained.

5 Case studies and numerical results
5.1 Critical assumptions

The proposed real-time PBUC optimisation model is implemented
on a PHS, the data of which are provided in Table 1 [31]. The
focus is on the ESS profitability from participation in the RTM
through its optimal awards of FRP and energy. Note that since the
ISOs attempt to procure 100% of their ancillary services in the
DAM, particularly spinning and non-spinning reserves as well as
regulation reserves [29], it is assumed that the ESS only
participates in the RTM in order to award energy and FRP. Hence,
the ESS involvement in the real-time reserve and regulation
markets is neglected in this study. It is also assumed that the ESS
has participated in DAM and its traded energy in DAM time-
intervals is considered known as the initial values in the RTM. The
values of α and β are assumed 0.95 and 0.5, respectively.

The system under study is the IEEE 118-bus test system whose
data are given in [31]. As the FRP is only procured during normal
operating conditions (and not during emergencies), the contingency
scenarios are not considered. DC power flow model is
implemented to run the RTM in which the transmission lines power

Fig. 2  Bidding strategy to achieve the optimal FRP and energy in State I
(increase in ESS generation or decrease in its consumption level)

 

Fig. 3  Bidding strategy to achieve the optimal FRP and energy in State II
(decrease in ESS generation or increase in its consumption level)

 
Table 1 Energy storage unit data
qg& qp, q̄g & q̄p, cg, cp,
Hm3/h Hm3/h $ $
7 20 100 200
SOC, SOC¯ , SOC0 & SOC f , ξ

Hm3 Hm3 Hm3

60 200 80 0.9
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capacity limits are taken into account. The generating units submit
energy bids in DAM and RTM based on their power-cost functions.
The original model was quadratic which was linearised with five
steps. The piece-wise linear power-cost function was used as their
bid in DAM and RTM. For wind generators, it is assumed that their
bidding price is 0, i.e. they sell with any market price. For loads, it
is assumed that they purchase the demands up to the price cap of
1000$/MWh.

In order to increase the net-load intermittency and the need for
FRP, the wind energy percentage is assumed to be 25% of the load.
The confidence level for the net-load forecast error coverage is
95% based on the current CAISO's practice and it is considered
that the FRP dispatch (energy under FRU and FRD) is distributed
among all the FRP providers proportional to their share of the total
procured FRP. The load and wind forecast error probability
distributions are assumed to follow normal distribution functions.
These normal functions have means equal to the day-ahead
forecasted value and the standard deviations provided below [24]:

• Day-ahead: 1% load, 10% wind.
• Real-time: 0.15% load, 1% wind.

In this case study, it is assumed that the ESS has access to the
grid model and is able to run a synthetic market to attain such
forecasts. With this in mind and in order to generate scenarios,
seven steps were assigned to each error probability function.
Among the generated scenarios, 30 of them are selected using the
forward probability distance algorithm as described in [32]. For
each RTM time-interval and for each selected scenario, a
deterministic unit commitment optimisation is run for the studied
test system whose realised real-time energy, FRU and FRD prices
along with the associated probabilities are used as the stochastic
parameters to feed in the optimisation model.

In order to reflect the effects of the realised energy and FRP
prices on the profitability of the ESS, Monte-Carlo simulation
(MCS) is implemented and ten cases are generated. The day-ahead
energy price along with the average of real-time energy, FRU and
FRD prices resulted from MCS are depicted in Fig. 4. 

The simulations were performed in GAMS environment using
CPLEX solver on a PC with 7-core processor and 16 GB of RAM
and the minimum gap was set to 0.1%. The average computation
time is found 349, 423, 537 and 766 s for 4-interval, 5-interval, 6-
interval and 7-interval optimisation models, respectively.

5.2 DAM results as input to the RTM scheduling problem

In this section, the output of the ESS participation in DAM is
provided. Of important note is that these data serve as the input to
the proposed RTM bidding strategy.

The ESS output power and stored energy from its participation
in DAM – based on the day-ahead energy prices of Fig. 4 – are
illustrated in Fig. 5. It is considered that the PHS stored energy
(water behind the dam) at the end of the day amounts equal to its
initial value (80 Hm3). According to Fig. 5, the ESS experienced
two transitions to generating state and two transitions to pumping
state during the entire day. Besides, the total energy sold by the
ESS in DAM is equal to $11317 and the total energy the ESS
bought in DAM is equal to $7112. Considering the two transitions
to the pumping state with the start-up cost of $200, the ESS total
profit from its participation in day-ahead energy market is equal to
$3805.

5.3 Real-time simulation results

The following two cases are simulated to assess the ESS
profitability when participating in the FRP market:

• Case I: RTM without FRP
• Case II: RTM with FRP

In Case I, the ESS only participates in the real-time energy
market, while it jointly participates in both real-time energy and
FRP markets in Case II. Note that the energy traded in DAM is
employed to initialise the RTM PBUC.

The FRP constraints are modelled earlier in Section 3 which is
studied in Case II. In Case I, these FRU and FRD constraints are
eliminated from the optimisation model. The average of ESS
output power in the ten MCS for this two cases are depicted in Fig.
6. Comparing these values with the real-time energy prices in Fig.
4, it is observed that the RTM change in ESS output power mainly
occurs when the real-time energy price fluctuation is highly intense
(i.e. time-intervals 20–40, 46–50, 64–75 and 86–96). With these
high fluctuations, the ESS's profit in energy market comes
primarily from generation in high-price intervals and storage in
low-price ones. No new transitions to generating or pumping states
occurred in RTM, while all such transitions were observed based
on the energy traded in DAM.

The ESS expected profit in each FRP time-interval is presented
in Fig. 7. Comparing the results in Figs. 6 and 7, it can be observed
that whenever the FRU and FRD marginal prices are 0 (see Figs.
4), the ESS real-time output energy in both cases are the same. On
the other hand, when the FRU price is positive, the ESS tends to
increase (decrease) its output power in consumption (generating)
mode in order to provide additional FRU (see Fig. 6 for the ESS
output power in Case I and Case II at time-intervals 64 to 71).

Fig. 4  Price signals including: DAM and RTM energy prices as well as
FRU and FRD marginal prices. The real-time prices are the average of the
ten MCS cases

 

Fig. 5  ESS stored energy and output power based on the energy traded in
DAM

 

Fig. 6  Average of ESS output power in RTM in two case studies: Case I
(without FRP) and Case II (with FRP)
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Similarly, whenever the FRD price is positive, the ESS tends to
increase its generating power or decrease its pumping power to be
able to make a profit by providing FRD. In the studied scenarios,
the ESS could not make any profit in time-intervals 95 and 96 as
the stored energy in the last time-interval was enforced to be equal
to that in the initial state.

The ESS expected profit from participation in real-time energy
market is equal to $1051 and $999 in Case I and Case II,
respectively. It is observed that the ESS profitability in energy
market is higher in case without FRP as compared to that with FRP
(5.2% higher in this case study). This is due to the change in the
ESS output power to provide FRP, which prevented the ESS to
practice its optimal participation in energy market. As
demonstrated in Fig. 7, the ESS expected profits for providing
FRU and FRD are, respectively, $281 and $197, amounting a total
profit of $478. Altogether, the ESS expected profit for its
participation in RTM are $1051 and $1477 in Case I and Case II,
respectively. As can be seen, the ESS profitability in RTM through
active participation in the FRP market has been significantly
increased (40% higher in this case study). Furthermore,
considering the DAM participation profit of $3805, the total ESS
profitability will increase from $4856 to $5282 (8.8% increment).

5.4 Proposed bidding strategy

To achieve the ESS optimal performance in the market, a bidding
strategy for ESS in the RTM is proposed, based on the principles
introduced in Section 4. The bidding strategy is implemented on
the real-time price signals of Fig. 4 (the average of ten MCS) and is
tabulated in Table 2. In this table, the two-level bids (one for
energy and one for FRP) when the FRU or FRD prices are greater
than 0.5$/MWh are demonstrated. According to Fig. 4, the FRP
prices in time-intervals 66–71 are greater than 0 while the FRD
prices are 0. In these time-intervals, the ESS submits a bid to sell
its power at a desired FRU (see Table 2: ‘Energy to sell’ column in
Level 2) with a price between the real-time λe and λe − λru, leading
to an optimal FRU procurement. Besides, the ESS submits a bid, in
the same time-intervals, to buy energy (except in interval 68 where
the ESS is in maximum consumption power) with a price lower
than λe − λru, leading to optimal energy values (see Table 2:
‘Energy to sell’ column in Level 1). Also, the ESS bids at Level 1
helps to free-up its ramp-up or ramp-down capacities, respectively,
in its generation or consumption modes, to be able to gain higher
FRU profits. As another example in time-intervals 93–96, the FRD
price is greater than 0 while the FRU price is 0. In time-intervals
93 and 94, the ESS submits a bid to buy some energy with a price
between λe and λe + λrd, leading to optimal FRD procurement (see
Table 2: ‘Energy to buy’ column in Level 2). Also, it submits a bid
with a price greater than λe + λrd to achieve the optimal energy
values. This bid helps the ESS to free-up its ramp-down capacity
and gain a higher FRD profit. In time-intervals 95 and 96, there is
no opportunity for ESS profitability in RTM since the stored
energy in the last time-interval was enforced to be equal to that in
the initial state.

5.5 Analysis on the performance of the proposed method

In this section, two crucial parts of the proposed methodology,
namely, selection of number of scenarios and the CVaR
performance are analysed and further discussed.

The number of selected scenarios plays a critical role on the
precision and effectiveness of the scenario-based optimisation
models. This feature is investigated by analysing the expected
profit, standard deviation of expected profit and the distance
between the reduced set and the original dataset being functions of
the number of scenarios. The corresponding results are depicted in
Figs. 8–10. As the results suggest, when the number of scenarios
exceeds 25, in both Case I and Case II, the expected profit and the
associated standard deviation remain stable. In addition, the
distance between the reduced scenario set and the original
stochastic model after 25 scenarios is reduced to less than 1.2% in
Case I and 2.5% in Case II. Note that while our analyses in this
particular problem show that selecting equal to or more than 25
scenarios may lead to acceptable results, there exist theoretical
works recommending the use of a higher number of scenarios to
generate an optimal solution [33, 34]. With the computation time
limit requirements (15 min), 30 number of scenarios are here
selected.

Fig. 7  FRU and FRD procuremnts and the ESS expected profit in RTM
 

Table 2 Two-level bidding strategy to gain FRP and energy
Level 1 Level 2

Time Energy
to sell,

MW

Energy to
buy, MW

Bid
price,

$/MWh

Energy
to sell,

MW

Energy to
buy, MW

Bid
price,

$/MWh
66 — 57.6 1000 25 — 17
68 — — — 22.54 — 18
69 — 5.9 1000 22.54 — 19
70 — 5.9 1000 22.54 — 13
71 — 5.9 1000 22.54 — 22
93 20.52 — −100 — 22.54 40
94 17.58 — −100 — 19.6 −12
95 — — — — — —
96 — — — — — —
 

Fig. 8  Expected profit versus the number of scenarios
 

Fig. 9  Standard deviation of expected profit versus the number of
scenarios
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The CVaR risk measure performance is assessed by analysing
the expected profit and its associated standard deviation as
functions of the risk aversion factor β. The results are depicted in
Fig. 11. As can be observed, at the confidence level α = 0.95, the
point β = 0.5 approximately can be counted as the knee point of
the expected profit curves. At this point, the standard deviation
remains in an acceptable range (12.8% of the expected profit in
Case I and 14.3% in Case II). Also, after this point, an increase in

the risk factor would reduce the expected profit faster than the
corresponding standard deviation.

5.6 Real-world case study

The unprecedented proliferation of grid-scale renewables has
called for additional ramping procurement (FRU and FRD) in order
to effectively and continuously capture the system uncertainties.
Higher FRP procurement increases the FRP marginal prices which,
in turn, brings about an opportunity for ESS's higher profitability.
In this section, a real-world case study whose data are adopted
from CAISO, with high-price FRP is presented to assess the out-of-
sample performance of the proposed scenario-based framework.
The historical DAM and RTM prices, whose mean values and
standard deviations are depicted in Figs. 12 and 13, are taken from
the market prices in ‘Arizona Public Service (AZPS) Balancing
Authority Area’ of CAISO, node ‘OM_LNODEFMR’ from 16
May 2018 through 15 June 2018 [35]. Also, the DAM energy
prices as well as the real-time energy, FRU and FRD prices for 16
June 2018 (see Fig. 14) used to assess the out-of-sample
performance of the proposed framework. 

The DAM traded power and the RTM power levels in Case I
and Case II are demonstrated in Fig. 15. As can be observed, the
ESS output power fluctuation in Case II is lower than that in Case I
when the FRP price is non-zero. This highlights the ESS tendency
to pursue additional profit by reserving its ramp capacity for FRP
(ramp-up for FRU in this case). Comparing the results in Figs. 6
and 15, it is observed that the difference between the ESS real-time
output powers in Case I and Case II is much higher in Fig. 15,
reflecting the fact that the higher the FRP price is, the lower the
profit will be. With this in mind, the ESS expected profits from the
energy trading in RTM are $5129 and $3211, respectively, in Case
I and Case II, revealing a 37% decrement in the RTM energy
profitability by the ESS participation in the FRP market. On the
other hand, the ESS expected profit for the FRP procurement is
$5053. All in all, the ESS profit due to its participation in RTM in
Case II is $8264 which is 61% higher than that in Case I.
Considering the ESS expected profit of $5437 in DAM, the total
expected profit in Case II is 29% higher than that in Case I.

6 Conclusion and discussion
The ESS profitability is a key factor in attracting private investors
to finance the energy storage technologies in power grids. The FRP
is a recently-introduced service in modern electricity markets,
offering a great opportunity for ESSs investors to increase their
profits. In this paper, a novel real-time PBUC optimisation model
for ESSs participation in FRP markets is proposed via which the
ESSs can determine the optimal output power and FRP that must
be gained in RTM in order to maximise the profit. The PBUC
problem is modelled as a risk-averse two-stage stochastic
optimisation, the first stage of which determines the optimal RTM
participation strategy and the second stage reflects the effects of
uncertainties associated with the energy and FRP prices on the
decisions made in the first stage. Furthermore, in order to include
the risk impacts on the proposed solutions, the CVaR measure is
added to the objective function. Since the FRP will only be
procured through ESS energy capacity reserve, this paper also
suggests an informed bidding strategy for ESS to submit the
optimal energy bids, ensuring that their desired energy and FRP
will be realised in RTM. The proposed mechanism is a two-level
bidding action that the ESS should submit: one for energy trades
and the other for FRP.

The proposed solution is simulated on the IEEE 118-bus test
system and MCS is performed to attain the expected real-time
realised position. It was observed that the ESS participation in FRP
market would result in a 40% increase in the ESS expected profit
in RTM. In another case study, the real-word price signals of the
CAISO electricity market, in which the FRP prices where
relatively high, are used for the ESS scheduling. The simulation
results justified the fact that the increase in FRP prices can
impressively enhance the ESS profitability in the RTM.

The following subjects are recommended for future research:

Fig. 10  Distance between the reduced scenario set and the original
dataset as a function of the number of scenarios

 

Fig. 11  CVaR performance as a function of risk aversion factor
 

Fig. 12  DAM historical data of energy prices [35]
 

Fig. 13  RTM historical data of energy prices [35]
 

IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 22, pp. 5202-5210
© The Institution of Engineering and Technology 2020

5209

Authorized licensed use limited to: The George Washington University. Downloaded on November 24,2020 at 08:13:21 UTC from IEEE Xplore.  Restrictions apply. 



• A crucial point in effective ESS participation in joint energy and
FRP market is to attain precise forecasts of real-time energy, FRU
and FRD prices which was out of the scope of the current work.
Future research is recommended to investigate the application of
advanced forecast algorithms such as machine learning,
specifically tailored to FRP price forecasts and applications in
RTM.
• The stochastic problem can be solved as well through chance-
constrained and robust optimisation formulations, through which
the uncertainties can be addressed effectively. These methods,
unlike scenario-based methods, enable dealing with much more
scenarios while preserving the computational tractability.
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Fig. 15  ESS output power in RTM in Cases I and II
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